scholarly journals Comparison of laser beam, oxygen and plasma arc cutting methods in terms of their advantages and disadvantages in cutting structural steels

2021 ◽  
Vol 2130 (1) ◽  
pp. 012022
Author(s):  
G Írsel ◽  
B N Güzey

Abstract The laser beam, plasma arc, and oxygen cutting methods are widely used in metal cutting processes. These methods are quite different from each other in terms of initial setup cost and cutting success. A powered laser beam is used in laser beam cutting, plasma is used in plasma arc cutting, flammable gas - oxygen mixture is used in the oxygen cutting method. In this study, the cutting success of these methods was investigated on tensile specimens. Microstructure, hardness (HV 0.1), surface roughness, and strengths were investigated after the cutting process. The tensile test implemented with tensile samples cut from the same material by these three methods, it was observed that the strength values of the samples changed by about 8% in tensile strength depending on the cutting process. The hardness of the cut surfaces in plasma arc cutting increased from 150 HV to 230 HV for S235JR material. For this reason, it is difficult to perform machining operations after plasma cutting. The hardness value reached after laser beam cutting is 185 HV. Plasma arc cutting is more cost-effective than laser beam cutting. 1-3° vertical inclination (conicity) occurs on the cut surface in plasma arc cutting, while this inclination almost does not occur in laser cutting. In plasma cutting benches, cutting is done with oxygen, and in cutting with oxygen, the taper is seen in a small amount.

2019 ◽  
Vol 946 ◽  
pp. 877-882
Author(s):  
I.Y. Matushkina ◽  
S.V. Anakhov ◽  
Yu.A. Pyckin

For experimental substantiation of plasmatrons work efficiency the technological regulations of quality and safety parameters test for plasma-arc cutting of metals technology are taken. For the integral evaluation of the obtained results it is proposed to use the methods of qualimetric analysis adapted to the technology of plasma cutting. The obtained integral parameters indicate the effectiveness of the new plasmatrons, designed by the authors in comparison with previously produced analogues, as well as with modern domestic and foreign samples.


2021 ◽  
Vol 13 (3) ◽  
pp. 151-157
Author(s):  
Agnieszka Rzeźnikiewicz ◽  
◽  
Jacek Górka ◽  

Cutting is usually one of initial and basic operations of the manufacturing process of welded structures and realization constructions elements. Thermal cutting, in particular plasma arc cutting is often used to prepare elements. The plasma arc cutting process involves melting and ejecting the liquid metal from the cutting gap with a highly concentrated plasma electric arc which is generated between the non-consuable electrode and the workpiece. The paper presents the results of research on the influence of plasma gas on structural changes and chemical compositions changes resulting unalloyed steel cutting by air plasma arc. It was shown that in the air plasma arc cutting process the amorphous layer with a very high nitrogen content (about 1.6%) and a hardness of 750 HV 0.2 was used. This high nitriding effect is due to the diffusion of nitrogen from the plasma gas. As a result of the interaction of air plasma arc gases on the liquid metal, the cutting surface is carburized (about 0.5%). The alloy components are also burnt according to the theory of selective oxidation of chemical elements. The material structure after the air plasma cutting process shows the structures between the structure formed after oxygen cutting processs and nitrogen plasma cutting process. The process of argon-hydrogen plasma cutting has the least influence on the cut material.


Author(s):  
H.M. Magid

Purpose: In this study, plasma arc cutting (PAC) is an industrial process widely used for cutting various away types of metals in several operating conditions. Design/methodology/approach: It is carried out a systematic or an authoritative inquiry to discover and examine the fact, the plasma cutting process is to establish the accuracy and the quality of the cut in this current paper assessed a good away to better the cutting process. Findings: It found that the effect of parameters on the cutting quality than on the results performed to accomplish by statistical analysis. Research limitations/implications: The objective of the present work paper is to achieve cutting parameters, thus the quality of the cutting process depends upon the plasma gas pressure, scanning speed, cutting power, and cutting height. Practical implications: The product of the plasma cutting process experimentally has been the quality of the cutting equipment that was installed to monitor kerf width quality by exam the edge roughness, kerf width, and the size of the heat-affected zone (HAZ). Originality/value: The results reveal that were technically possessed of including all the relevant characteristics, then a quality control for the cutting and describe the consequence of the process parameters.


2014 ◽  
Author(s):  
Jerald E. Jones ◽  
Valerie L. Rhoades ◽  
Mark D. Mann ◽  
Todd Holverson

A new cutting process, a hybrid system, uses induction heating to heat the metal ahead of the plasma cutting torch. The process has demonstrated the ability to plasma cut steel parts at speeds of up to 4X the speed of the plasma torch without the induction heating. Although the total heat input per unit time is greater, because of the increase in speed, the heat which is conducted into the cut pieces is less. This causes less potential metallurgical damage, less potential distortion, and reduced coating damage and reduced emissions during cutting, in comparison to the plasma cutting process without the induction heating. The initial development was primarily for use in cutting nuclear submarine and aircraft carrier hulls, for scrapping after decommissioning. The process has been demonstrated cutting steel plates and can be used in ship production as well. The primary motivation of the SBIR project was to reduce the heating of the cut pieces, in order to reduce the particulate matter (PM) emissions which occur when coated ship hull material is cut. An induction coil is positioned in front of the plasma cutting torch, to bring the material to an elevated temperature of at least 1600° F, before the plasma is applied to the metal surface. Induction heating testing has shown that the 35 kW induction system can maintain the 1600° F surface temperature at travel speeds of above 220 inches per minute on steel as thick as 3 inches. Once the steel is at that temperature an air plasma torch can cut the metal much faster than cutting cold steel.


2006 ◽  
Vol 11 (6) ◽  
pp. 701-706
Author(s):  
K. Kusumoto ◽  
Q. G. Chen ◽  
W. Xue

2012 ◽  
Vol 576 ◽  
pp. 3-6 ◽  
Author(s):  
R. Bhuvenesh ◽  
M.S. Abdul Manan ◽  
M.H. Norizaman

Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. Therefore, the roughness of the surface area of the cutting material and the rate of the material being removed during the manual plasma arc cutting process was importantly considered. Plasma arc cutter Selco Genesis 90 was used to cut the specimens made from Standard AISI 1017 Steel manually based on the selected parameters setting. Two different thicknesses of specimens with 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the weight of the specimens before and after the cutting process. The surface roughness (SR) analysis was conducted to determine the average roughness (Ra) value. Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results reveal that for the case of manual plasma arc cutting machining, the SR values are inversely proportional to the MRR values. The quality of the surface roughness depends on the dross peak that occurred during the cutting process.


2008 ◽  
Vol 392-394 ◽  
pp. 735-742
Author(s):  
Bo You ◽  
De Li Jia ◽  
Feng Jing Zhang

A variable interval fuzzy quantification algorithm with self-adjustable factor in full domain is proposed in this paper. It focuses on digital inverted plasma arc cutting power and studies strong nonlinearity and uncertainty of power. The neural network is also introduced to decouple cutting parameters variables in the multi-parameters coupling cutting process. This algorithm avoids complex nonlinear system modeling and realizes real-time and effective online control of cutting process by combining advantages of fuzzy control and neural network control. Furthermore, the optimized fuzzy control improves steady-state precision and dynamic performance of system simultaneously. The experimental result shows that this control improves precision, ripples, finish and other comprehensive index of work piece cut, and plasma arc cutting power supply based on fuzzy-neural network has excellent control performance.


2014 ◽  
Vol 511 ◽  
pp. 012067 ◽  
Author(s):  
T Kavka ◽  
S Tossen ◽  
A Maslani ◽  
M Konrad ◽  
H Pauser ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 569-572 ◽  
Author(s):  
Deepak Kumar Naik ◽  
Kalipada Maity

Purpose This paper aims to work exhibits the temperature distribution over the surface of the workpiece during plasma arc cutting process. Design/methodology/approach The moving heat source is taken into consideration for calculating the heat created by plasma arc. The heat is generated at the plasma – liquid metal boundary. The heat of fusion is also considered for estimation because of molten layer separates the plasma and solid layer. This causes to hamper the heat transfer towards the melting front. Eliminating the heat resistance may calculation error at high cutting speed. Power required to melt the material depends on the speed of the cut. Findings Higher cutting speed increases the power required. The temperature drop over the layer of molten front increases as the speed of cut increases at higher Peclet number. Different thickness of the molten layer was taken for calculation i.e. zero thickness, 10 and 20 per cent. Originality/value The estimated results are shown in non-dimensional form. So, the method can be applied for any other types of material.


Sign in / Sign up

Export Citation Format

Share Document