scholarly journals Water-glass Module on Mechanical Properties of Geopolymer Recycled Aggregate Concrete

2022 ◽  
Vol 2148 (1) ◽  
pp. 012060
Author(s):  
Zhaoyang Ding ◽  
Qun Su ◽  
Hongguan Bian ◽  
Qing Wang ◽  
Jinghai Zhou

Abstract Geopolymer recycled aggregate concrete (GRAC) was prepared by replacing cement with geopolymer and natural aggregate with wast concrete. The effect of water-glass modules on mechanical properties of GRAC was studied. It was found that there are tow kind of binding structures in geopolymer hydration product: C-A-S-H and N-A-S-H, they both contribute to the strength of GRAC. The value of size conversion coefficient of current national standard is inapplicable for GRAC, the calculation method of which is given in this paper. Elasticity modulus and peak stress of GRAC is proportional to water-glass modulus, and peak strain is inversely proportional and its constitutive equation was established.

2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anjun Li ◽  
Gaoqiang Zhou ◽  
Xianggang Zhang ◽  
Ercong Meng

A novel recycled aggregate concrete was prepared by replacing the natural aggregate with recycled lightweight aggregate. Subsequently, the mechanical properties and compressive stress-strain constitutive relation of the recycled lightweight aggregate concrete (RLWAC) were explored. For this purpose, the recycled lightweight aggregate (RLWA) replacement ratio (0%, 25%, 50%, 75%, and 100%) was selected as a variable, and the compressive strength of 15 cube and 30 prism specimens was evaluated. The failure morphology of the specimen was subsequently characterized, along with the cubic compressive strength, axial compressive strength, peak strain, ultimate strain, and other performance indices. The influence of the replacement ratio for the specimen indices of the RLWAC was also analyzed. It was observed that the dry apparent density of RLWAC decreased gradually on increasing the replacement ratio. Compared with 0% replacement ratio, a decrease of 6.50%, 11.39%, 21.84%, and 27.54% was observed, respectively. On enhancing the RLWA replacement ratio, the compressive strength, peak strain, and ultimate strain of RLWAC were observed to be gradually reduced. As the replacement ratio was increased from 75% to 100%, the peak strain was noted to decrease the most by about 6.8%. As the replacement ratio was increased from 50% to 75%, the ultimate strain decreased the most by about 14.2%. Based on the experimental findings, the functional relationships of the strength indices and the conversion value of each strength index with the replacement ratio were also established. Finally, based on the model proposed by the existing model, the stress-strain equation of RLWAC was developed, and the fitting results were observed to be in good agreement with the test results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xingguo Wang ◽  
Maolin Jiang ◽  
Xianggang Zhang ◽  
Zhaoxia Cheng ◽  
Jian Gong ◽  
...  

The recycled aggregate (RA) was modified by 2% nanosilica solution, and the split Hopkinson pressure bar (SHPB) test device was used to study the dynamic impact properties of the modified recycled aggregate concrete (RAC) mixed with polyvinyl alcohol (PVA) fibers. The RA replacement percentage, the amount of PVA fiber, and the strain rate were variables. The failure pattern, the stress–strain curve of the nanosilica solution, and PVA fiber-modified RAC were shown under different strain rate conditions. Dynamic peak stress, peak strain, and dynamic increase factor (DIF) of the specimens are discussed. The results showed that the stress and dynamic peak strain value of the specimen increased with the increase of the strain rate; moreover, with the increase of the RA replacement percentage and the PVA fiber content, the dynamic peak stress of the specimen decreases, while the dynamic peak strain and the DIF value increase. The incorporation of nanosilica-modified RA is beneficial to the improvement of the impact performance of RAC, and the incorporation of an appropriate amount of the PVA fiber effectively improves the deformability of RAC.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6712
Author(s):  
Fan Xu ◽  
Tao Li ◽  
Chenghua Li ◽  
Zhijun Li ◽  
Sheliang Wang ◽  
...  

To improve the high brittleness of recycled aggregate concrete containing iron ore tailings (TRAC), the feasibility of adding polypropylene fiber (PPF) to TRAC was studied by performing a compression stress–strain curve test, scanning electron microscope characterization, and a freeze–thaw cycle test. The results indicated that PPF had a beneficial impact on reducing the brittleness of TRAC. With the increase in PPF content, the peak strain increased, the elastic modulus decreased, and the peak stress and energy absorption capacity increased at first and then decreased. Furthermore, the microstructure investigation revealed that the interface friction between the PPF, aggregate, and cement matrix was the main source of energy dissipation. When the load acted on the concrete, the stress was dispersed to the fiber monofilaments, thus effectively enhancing the peak stress and peak strain of concrete and suppressing the generation and development of cracks in the concrete. In terms of freeze–thaw resistance, adding a small amount of PPF could reduce the negative effects of the freeze–thaw process on the cement matrix. On the premise of ensuring strength, the waste utilization should be as high as possible. Therefore, it was suggested that the content of PPF in fiber-reinforced tailings recycled aggregate concrete (TRAC-PP) should be 0.6%.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingguo Wang ◽  
Fei Cheng ◽  
Yixin Wang ◽  
Xianggang Zhang ◽  
Haicheng Niu

The optimal soaking time and nanosilica concentration were chosen by the physical properties of the nanosilica-modified recycled aggregate. Recycled aggregate concrete (RAC) and nanosilica recycled aggregate concrete (SRAC) were fabricated by using ordinary recycled aggregate and nanosilica-modified recycled aggregate. Based on the comparative experimental study of basic mechanical properties, the effects of nanosilica recycled aggregate(SRA) modification and recycled aggregate(RA) replacement percentage on the basic mechanical properties of recycled concrete were analyzed. Finally, the split-Hopkinson pressure bar (SHPB) was used to conduct comparative experimental research on the impact resistance of recycled aggregate concrete and nanosilica-modified recycled aggregate concrete. The effects of nanosilica recycled aggregate modification and aggregate replacement percentage on failure morphology, dynamic peak stress, dynamic increase factor (DIF), dynamic peak strain were analyzed.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Xiaobin Hu ◽  
Qinwang Lu ◽  
Shanshan Cheng

This paper presents a proposed uniaxial damaged plastic constitutive relation of recycled aggregate concrete (RAC) based on the experimental studies. A total of five groups of RAC specimens with different recycled coarse aggregate (RCA) replacement percentages of 0, 25%, 50%, 75%, and 100%, respectively, are tested under both monotonic loading and cyclic loading. The effect of the RCA replacement percentage is thoroughly investigated on a variety of mechanical properties, including the compressive strength, the peak strain, and the elastic modulus. Based on the test results, a uniaxial damage plastic constitutive relation of the RAC is proposed within the continuous thermodynamics framework. After validated by the experimental results, the proposed damaged plastic constitutive relation of the RAC is applied to perform nonlinear analysis of the RAC columns under cyclic loading, which provides close predictions of the hysteresis behavior of the RAC columns.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2021 ◽  
pp. 136943322110179
Author(s):  
DongTao Xia ◽  
ShaoJun Xie ◽  
Min Fu ◽  
Feng Zhu

Fiber reinforced recycled aggregate concrete has become a new type of green concrete material. The maximum particle size of coarse aggregates and steel fiber contents affect the mechanical properties and impact resistance of recycled aggregate concrete. However, such studies are rare in literature. The present paper shortens the gap through experimental study. A total of 144 specimens of 12 kinds of concrete mixtures were tested, which adopted different steel fiber volume admixtures (0%, 0.8%, 1.0%, 1.2%) and recycled coarse aggregates in different maximum particle sizes (9.5, 19, 31.5 mm) replacing 30% natural coarse aggregate. The compressive strength, splitting tensile strength, and impact resistance of the 12 concrete mixtures were tested. The results showed that the compressive strength, splitting tensile strength, and impact resistance of recycled aggregate concrete increased first and then decreased with the increase of the maximum particle size. The recycled aggregate concrete with the maximum particle size of 19 mm had the highest mechanical properties and impact resistance. Besides, with the increase of steel fiber content, the compressive strength, splitting tensile strength, and impact resistance of recycled aggregate concrete showed an increasing trend. Considering a large amount of experimental data and the coupling effect of steel fiber contents and the maximum particle size of coarse aggregates, the Weibull distribution function was introduced to analyze the impact test results and predict the number of resistance to impact under different failure probabilities. The results showed that the number of blows of the recycled aggregate concrete followed a two-parameter Weibull distribution, and the estimated value of the number of resistance to impact for failure increased with the increase of the failure probability.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document