scholarly journals Experimental study of an internal combustion engine fueled by a low-calorific value producer gas

2022 ◽  
Vol 2150 (1) ◽  
pp. 012015
Author(s):  
G I Nikitina ◽  
A N Kozlov ◽  
M V Penzik

Abstract This paper describes an experimental study of the operation of an internal combustion engine of fueled by a low-calorific value gas. The main operating parameters of low-power ICE were determined. Efficiency was also evaluated when the ICE was converted to operate on producer gas. In the experiment, it was shown that the engine reached a stable operating mode under load and data on the temperature and exhaust gases composition were obtained. According to our estimates, in the steady-state operation of the internal combustion engine with a load, the efficiency factor was about 22 %. When using the model gas, the from generator output power, was about 30-40 % of the nominal value, under variable load conditions. However, it was found that in steady-state operation, the power of the internal combustion engine was 40-55% of the nominal value.

Author(s):  
Singh P. Shivakumar

An internal combustion engine essentially requires a fuel which must have sufficient calorific value to produce enough power, and oxygen for the combustion of fuel. In normal vehicles fuel will be supplied from a fuel tank equipped with it. And oxygen will be taken from the atmospheric itself. Under normal conditions the percentage of oxygen present in atmospheric air will be around 21% of the total volume. Studies shows that by increasing the oxygen percentage in the inlet air increases engine performance and reduces emission produced by the engine.


2021 ◽  
Author(s):  
Scott A Warwick

Dynamical behaviors of a system consisting of a Saito-450 3-cylinder, 4-stroke engine and a variable pitch propeller are studied. The kinemtical equations for the planar 8-bar internal combustion engine are established using a complex number method. The nonlinear dynamical equation for the engine-propeller system is obtained using the Lagrange equation and solved numerically using a computer code written in the Matlab language. Various simulations were performed to study the transient and steady state dynamical behaviors of the sophisticated multiple rigid body system while taking into account the engine pressure pulsations and aerodynamic load. The steady-state motions of the propeller shaft for different engine powers and speeds were obtained and decomposed using the Fast Fourier Technique (FFT). Results presented in this thesis provide necessary input for studies of flexible body dynamics where the torsional vibration of the propeller shaft is of practical interest to design engineers in the aerospace industry.


2015 ◽  
Vol 792 ◽  
pp. 553-558
Author(s):  
Leonid Plotnikov ◽  
Boris Zhilkin ◽  
Yuriy Brodov

The results of experimental study of the exhaust process of the piston internal combustion engine are presented in the article. A method for improving the cleaning of the cylinder from the exhaust gas on the basis of the effect the ejection is proposed in the paper. Dependences of change of the instantaneous gas velocity on the angle of rotation of the crankshaft in the exhaust tract of a different configuration (with ejector and without it) are listed in the article.


Sign in / Sign up

Export Citation Format

Share Document