scholarly journals Analysis of Construction Monitoring and Control of Tunnels Crossing Broken Faults and Water-rich Geology

2022 ◽  
Vol 2152 (1) ◽  
pp. 012019
Author(s):  
Jingang Fang

Abstract In view of the poor geology such as tunnel engineering crossing faults or passing faults, the construction of surrounding rock and support is complicated. During construction, it is necessary to ensure the stability of the surrounding rock and supporting system, and ensure the timing of the secondary lining construction. For this reason, through the analysis and processing of monitoring data, the law of stratum change is mastered, and the supporting parameters and construction methods are adjusted and revised at the same time, so as to provide the best information for the tunnel surrounding rock and supporting lining construction.

2013 ◽  
Vol 405-408 ◽  
pp. 1355-1359
Author(s):  
Hai Xia Ao ◽  
Yue Zhang

The monitoring measurement on-site, which monitors the stability of surrounding rock and tests the rationality of design, is an indispensable mean. In the process of construction, the Zhang Jiaqu tunnel is open, by monitoring the whole section, guiding and determining the construction time of secondary lining and mastering the working state of primary supporting. This paper introduces the main content of monitoring measurement and analyzes the monitoring data, so as to provide the reference for similar projects.


2011 ◽  
Vol 250-253 ◽  
pp. 1262-1265
Author(s):  
Tong Liu ◽  
Zi Chao Dong ◽  
Hai Yong Yang

According to the characteristic of multi-arch highway tunnel,based on a practice engineering, the monitoring work was consisted of four sections:the displacement of surrounding rock; such as crown settlement, displacement of the ground, displacement of inner surrounding rock; that of stress and stain of support structure; that of force in middle-wall. In course of construction,monitoring data was analyzed in time.Structural timbering parameters were modified in response to abnormal monitoring data in order to guarantee safety.the testing results of the safety monitoring system are satisfactory, which serves as a symbol of our research work. Thus, our engineering practice has proved the applicability and feasibility of the safety monitoring and information construction methods.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2019 ◽  
Vol 9 (13) ◽  
pp. 2588 ◽  
Author(s):  
Jing Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
Shangqu Sun ◽  
Xingzhi Ba ◽  
...  

A large number of subway projects need to cross all kinds of disaster sources during the construction process. When a disaster source is unknown and uncertain, it is difficult for tunnel stability analysis to conform to the actual situation, which is likely to cause serious geological disasters. Firstly, the accurate location of the source of the disaster is realized via the geophysical method, and the orientation of the target is determined. Secondly, real imaging of the geological disaster source is realized using fine three-dimensional scanning equipment. Finally, the coupling law of the seepage field, displacement field, and stress field of the tunnel surrounding rock are analyzed. The stability of the tunnel is analyzed, and the reasonable karst treatment method is put forward.


2013 ◽  
Vol 333-335 ◽  
pp. 1867-1871
Author(s):  
Hui Mei Zhang ◽  
Hai Bo Cao ◽  
Xiang Miao Xie

The stability of tunnel surrounding rock is a key scientific issue in the design and construction of the tunnel engineering. Taking the load pattern of incremental form, the distribution law of stress and displacement field of the Osaka mountain tunnel after excavation was calculated based on the D-P yield criterion; Basing on the comprehensive heat and mass transfer theory, the temperature field in the surrounding rock was calculated and the variation of stress and displacement field after the surrounding rock experiencing the free-thaw cycles. All of the results can provide some references for the design and safe construction of the tunnel engineering under the action of freeze-thaw environment in cold regions.


2014 ◽  
Vol 580-583 ◽  
pp. 983-986
Author(s):  
Chun Lei Xin ◽  
Bo Gao

Long-span and bifurcation tunnel engineering is not very common in underground engineering field. It is difficult to construct this complicated structure because of the numerous influencing factors. In order to find out the optimum construction method for long-span and bifurcation tunnel to guarantee construction security and stabilization of this project, six construction methods were compared and analyzed by using numerical simulation. The results show that: (1) The excavation of confluence segment and small interval tunnel can affect each other but the confluence segment is the crucial part of the whole project. (2) The vertical brace determines surrounding rock and preliminary support stabilization in confluence segment. (3) The central concrete between main tunnel and ramp tunnel is the key point to guarantee the construction security and stabilization of small interval tunnel. The above results certainly contribute to research and develop new types of construction methods for long-span and bifurcation tunnel engineering.


2020 ◽  
Vol 33 (2) ◽  
pp. 227-241
Author(s):  
Fawad Azeem ◽  
Ghous Narejo

Effective monitoring and control of isolated rural microgrid in the developing world is challenging. The modern communication and monitoring is difficult to handle in such communities due to a complicated approach to the area, lack of modern facilities and unavailability of skilled manpower. Implementation of a microgrid in such areas using intermittent renewable sources and limited storage is challenging. Uncontrolled load consumption leads to the system-wide outages due to prolonged storage utilization in peak hours and is referred here as battery storage stress hours (BSSH). This research is focused to study and analyze the behavior of parametric load monitoring and control algorithm that could control the distinctive load of the microgrid during BSSH. In the proposed algorithm, the residential loads are distinctively controlled while utilizing the three locally available parameters that are the state of the charge of storage, solar irradiations and ambient temperature. In other words, the natural parameter variations have been uniquely utilized as a monitoring tool for load control. The fuzzy controller takes a decision for the activation or deactivation of any load based on the three parameters variation ranges. It is observed from the simulation and experimental results that while only utilizing locally available parameters the effective load control is possible.


2021 ◽  
Vol 236 ◽  
pp. 03026
Author(s):  
Li Yongyu ◽  
Wang Yu ◽  
Wang Shihua

The deformation of tunnel surrounding rock is the key factor to analyze the stability of surrounding rock. However, due to the influence of many factors and the strong non-linear relationship between the factors, it is difficult to predict the deformation effectively. In this paper, a method based on cellular ant neural network model is proposed to simulate the displacement of surrounding rock with time. The results show that this method is efficient and feasible, and can meet the requirements of engineering and control.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xu Chongbang ◽  
Qin Youlin

Although the determination of tunnel construction methods is extremely critical for the construction of ultra-large-span tunnels, the determination of construction methods is still at a qualitative level, which relies on the engineering experience of on-site technicians and lacks rigorous and systematic theoretical basis and technical standards. By means of orthogonal test method, the proper construction method was established for the deep-buried ultra-large-span tunnel where the tunnel excavation span, tunnel surrounding rock strength, and rock integrity coefficient were set as the main control factors. The stability of tunnel surrounding rock under various test conditions was quantified according to the plastic zone properties calculated by the three-factor and five-level orthogonal test model. Meanwhile, the macro form and quantitative method of test combinations under different levels of various factors were proposed to obtain the influence of each factor on the stability of tunnel surrounding rock, and thus the functional relations between various factors and tunnel stability were obtained. On this basis, the identification and the criterion of the ultra-large-span tunnel construction method were established, which can quantitatively reflect the contribution of excavation span of the tunnel, the number of lateral drifts in cross section, surrounding rock strength, and rock integrity coefficient to surrounding rock stability of the tunnel. The construction method calculation results of the Malin tunnel, a practical underground project, are obtained according to the orthogonal test model calculation. Based on the method, Malin tunnel can be constructed safely and efficiently. The research results could provide the theoretical basis for the identification and selection of construction method for ultra-large-span tunnel.


Sign in / Sign up

Export Citation Format

Share Document