scholarly journals The Effect of Sugar Content for the Wettability of Superhydrophobic Aluminum Substrate

2022 ◽  
Vol 2152 (1) ◽  
pp. 012023
Author(s):  
Shuwei Lv ◽  
Xinming Zhang ◽  
Xiaodong Yang ◽  
Ying Zhai

Abstract A chemical etching technique is used to prepare a superhydrophobic surface with a honeycomb rough structure on the aluminum surface. Use SEM, Optical contact angle meter and Surface tension detector to characterize the etched aluminum substrate. After the 8th etching, the surface of the sample showed the morphology of micro/nano-scale honeycomb pores and protrusions, and the water contact angle (WCA) is 135°. After being modified with octadecanethiol methanol solution, WCA is 153.1°. After modification, the contact angle of the sample surface decreases with the increase of the glucose solution concentration. When the glucose solution concentration reaches 1000 mg/L, the superhydrophobicity is lost.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3497 ◽  
Author(s):  
Daiki Nakajima ◽  
Tatsuya Kikuchi ◽  
Taiki Yoshioka ◽  
Hisayoshi Matsushima ◽  
Mikito Ueda ◽  
...  

A superhydrophilic aluminum surface with fast water evaporation based on nanostructured aluminum oxide was fabricated via anodizing in pyrophosphoric acid. Anodizing aluminum in pyrophosphoric acid caused the successive formation of a barrier oxide film, a porous oxide film, pyramidal bundle structures with alumina nanofibers, and completely bent nanofibers. During the water contact angle measurements at 1 s after the water droplet was placed on the anodized surface, the contact angle rapidly decreased to less than 10°, and superhydrophilic behavior with the lowest contact angle measuring 2.0° was exhibited on the surface covered with the pyramidal bundle structures. As the measurement time of the contact angle decreased to 200–33 ms after the water placement, although the contact angle slightly increased in the initial stage due to the formation of porous alumina, at 33 ms after the water placement, the contact angle was 9.8°, indicating that superhydrophilicity with fast water evaporation was successfully obtained on the surface covered with the pyramidal bundle structures. We found that the shape of the pyramidal bundle structures was maintained in water without separation by in situ high-speed atomic force microscopy measurements.


Author(s):  
Choi Yee Foong ◽  
Naznin Sultana

Recently, in the field of tissue engineering, fabrication of three-dimensional (3D) electrospun scaffold or membrane is much emphasized. In this study, layered composite scaffolds or membranes were fabricated using two biodegradable polymers, polycaprolactone (PCL) and Chitosan layer-by-layer with multilayer electrospinning method. Characterizations of membranes were done using several techniques. Electrospun composite membrane’s surface morphology was examined using a Scanning Electron Microscopy (SEM) and the wettability of the material’s surface was determined using water contact angle measuring measurement (WCA). Water uptake properties of electrospun membrane were also determined. Using optimized solution concentration and electrospinning processing parameters, the composite PCL/Chitosan and PCL layer-by-layer were successfully fabricated. It was observed from SEM that the composite electrospun membranes produced consisted microfibers and nanofibers within single scaffold. The water contact angle for the double-layered composite electrospun membranes was lower than the pure PCL. The double-layered composite membrane also had higher water uptake properties compared to pure PCL scaffold.


2017 ◽  
Vol 263 ◽  
pp. 97-102
Author(s):  
Prapatsorn Prathungthai ◽  
Sutham Srilomsak ◽  
Wimonlak Sutapun ◽  
Sukasem Watcharamaisakul ◽  
Lada Punsukumtana

In this research study the fabricated of hydrophobic of SiO2 nanoparticles was modified with tetraethylorthosilicate (TEOS), poly-(dimethylsiloxane) (PDMS) and methyltriethoxysilane (MTES) by using a sol-gel method. The effects of precursors, coating techniques and curing conditions were investigated. A water contact angle (WCA) measurement done using a sessile drop method with an optical contact measuring apparatus. Morphologies of the hydrophobic films were depicted using scanning electron microscopy (SEM). All data were analyzed using Design Expert® software. Results shown that a morphology of hydrophobic films had nanoroughness as evidenced by high contact angle. The largest predicted WCA of these is 150.306 degrees, which will be obtained with a TEOS:SiO2:PDMS:MTES ratio equal to 7.00:3.374:2.75:3.00 wt.% respectively. It is coated using a dipping technique and oven cured at 400°C.


2006 ◽  
Vol 309-311 ◽  
pp. 1199-1202 ◽  
Author(s):  
Abraham Salehi ◽  
Stanley Tsai ◽  
Vivek Pawar ◽  
Jeff Sprague ◽  
Gordon Hunter ◽  
...  

The wettability behavior of orthopaedic materials influences the fluid film layer that affects both the friction and wear of the articulating surfaces in total joint arthroplasty. This study examined the wettability of various orthopaedic bearing materials such as alumina, zirconia, cobalt chrome (CoCr), and oxidized zirconium (OxZr). Diamond-like carbon (DLC) coating on CoCr was also examined. Additionally, the effect of radius of curvature was examined using OxZr femoral heads of various diameters. The contact angle of the liquid droplet on the surface of the material was measured using a optical contact angle method. Both water and bovine serum with 20 g/L protein concentration were used during testing, with a droplet size of 0.25 -L. The droplet was dispensed from an automated syringe and brought into contact with the sample surface. The contact angle was then measured by fitting polynomial curves to the sample surface and drop geometry. Ten individual drops were analyzed on each test component, with at least three test components for each material. There were no differences in contact angles with changing head size or when using serum compared to water. The alumina, OxZr, and zirconia femoral heads all exhibited a similar contact angle, while CoCr and DLC showed significantly greater contact angles. The smaller contact angles for the oxide ceramic surfaces indicate that they tend to be more wettable than the metals, which may help explain their lower friction and superior adhesive wear performance.


2014 ◽  
Vol 680 ◽  
pp. 93-96
Author(s):  
Muhammad Hafiz Ab Aziz ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Wan Mokhdzani Wan Norhaimi ◽  
Steven Taniselass ◽  
...  

This paper reports on the contact angle measurement analysis on a glass based surface for anodic bonding process cleaned by three distinct cleaning processes. The three types of glass based surface used were silica, pyrex, and soda lime glass. The three cleaning solutions tested in this experiment were RCA, piranha and acetone. Water Droplet Test (WDT) was done to analyze the contact angle of micro droplet on sample surface. It can be done by dropping a droplet of water in constant volume at the fixed height and angle. Only RCA process constantly decreases the contact angle value after cleaning. The compilations of data strongly proved that all samples become hydrophilic after RCA cleaning process. The solid surface is considered hydrophilic when water contact angle is smaller than 90°, and hydrophobic profile if the water contact angle is larger than 90°. Samples which undergo piranha and acetone cleaning did not prove any characteristic of hydrophilic or hydrophobic surface after cleaning.


2012 ◽  
Vol 200 ◽  
pp. 190-193 ◽  
Author(s):  
Ruo Mei Wu ◽  
Shu Quan Liang ◽  
Hong Chen ◽  
An Qiang Pan ◽  
Hai Yun Jiang ◽  
...  

A novel and stable super-hydrophobic film was prepared by stearic acid (C18H36O2), which was chemically adsorbed onto the anodized aluminum surface. The maximum static water contact angle (WCA) of the super-hydrophobic surface was 157.5º ± 2.0º and the contact angle hysteresis was less than 3º. The superhydrophobic property is attributed to the micro-nanoporous surface morphology and stearic acid. The pore size on the surface of anodic aluminum oxide is an important factor for controlling the superhydrophobic adhesiveness. The superhydrophobic surface is a factor to reduce device-associated infection and can be used in metal packaging practice.


2016 ◽  
Vol 47 (1) ◽  
pp. 125-146 ◽  
Author(s):  
Mehmet Dasdemir ◽  
Hatice Ibili

This study focuses on the development of superhydrophobic and alcohol-repellent medical nonwoven fabrics via electrohydrodynamic atomization (electrospraying). It also compares the effectiveness of electrospraying with conventional pad-dry-cure finishing application. A commercial fluorochemical finishing agent was used to prepare fluorochemical solutions at varying concentrations (0.9–9 wt%). Electrospraying characteristics of these solutions were determined with characterizing their solution properties such as viscosity, conductivity and surface tension. After the successful applications of fluorochemical solutions on nonwoven fabrics via padding and electrospraying, wet pick-up ratios and weight gains of these fabrics were calculated. Also, water and alcohol repellencies of the coated fabrics were characterized with water contact angle and alcohol contact angle measurements. According to our findings, electrospraying application yielded less chemical consumption and higher water contact angle and alcohol contact angle results than padding. Increasing solution concentration and application time for electrospraying enhanced water contact angle values, which reached a maximum level (up to 156°) and afterwards remained almost constant depending on these variables. Thus, their limits to achieve superhydrophobic surfaces were able to be determined. Electrosprayed nonwovens were also shown to be alcohol-repellent against alcohol/water mixture of 70/30 (v/v%) whereas that was 30/70 (v/v%) for padded nonwovens. The investigation of the electrosprayed surfaces revealed a very less coating on the uppermost side of surface fibres which mostly led to the enhanced water and alcohol repellencies. One of the other important outcomes of this study is that there was no significant change on the comfort properties of nonwoven fabrics after the electrospraying application.


2021 ◽  
Vol 889 ◽  
pp. 85-90
Author(s):  
Asmaa Elrasheedy ◽  
Mohammed Rabie ◽  
Ahmed Hassan El-Shazly ◽  
Mohamed Bassyouni ◽  
Ahmed Abd El-Moneim ◽  
...  

In the present study the surface morphology of electrospun fibers at different polystyrene (PS) solution concentration was studied by SEM imaging to determine the best PS solution concentration yielding continuous uniform beadles fibers. Contact angle measurements of the optimum fabricatedPS-18 membrane confirmed the super hydrophobic property of the membrane that exhibited a static water contact angle of 145o. Numerical investigation of the performance of PS-18 membrane at different membrane thicknesses and porosities on direct contact membrane distillation showed that increasing the membrane porosity increases the permeate flux considerably.


2021 ◽  
Vol 875 ◽  
pp. 322-328
Author(s):  
Aneeqa Naeem ◽  
Esham Butt ◽  
Hamza Khawaja ◽  
Irfan Nadeem ◽  
Rehan Akhter ◽  
...  

Traditionally superhydrophobic surfaces are prepared by applying liquid repellant organic coatings or nano-based coatings. These superhydrophobic coatings are prone to wear and can be easily damaged by abrasion and cleaning. Recently researchers are switching interest to more efficient and promising technology of pulse laser texturing for engineering sub-micron topographies to have superhydrophobic surfaces. In this research, the micro-second Laser Pulses are used to feature sub-micron textures on titanium nitride coated aluminum and polished aluminum surfaces in order to achieve the water contact angle greater than 150°. Titanium nitride coated aluminum surface with scan line separation of 50 µm shows superior hydrophobicity having a water contact angle of 156º. These superhydrophobic aluminum surfaces have applications for anti-water clogging and anti-corrosion use.


2014 ◽  
Vol 697 ◽  
pp. 80-84
Author(s):  
Yong Mei Xia ◽  
You Fa Zhang ◽  
Xin Quan Yu ◽  
Feng Chen

Metal aluminum surface can be corroded easily in acid and alkaline environment. Inspired by the self-cleaning lotus leaf, the development of superhydrophobic metal surfaces to prevent metals from corroding is enjoying tremendous popularity amongst scientists and engineers. In this work, superhydrophobic surface was obtained on aluminum foils via a facile neutral sol solution immersion process and post-modification in ethanol solution of heptadecafluoro-1,1,2,2-tetradecyl trimethoxysilane (FAS-17) solution through a hydrothermal synthesis technique. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and water contact angle measurement are used to investigate the morphologies, microstructures, chemical compositions and wettability of the produced films on aluminum substrates. The results indicated that the superhydrophobic surface, configured of a rough labyrinth structure with convexity and notch, has robust hydrophobility, which had a static water contact angle of 165.6 ± 2.8° and a water roll-off angle of <1°, exhibited long-term durability and stability in air. The present research work provides a new strategy for the simple preparation superhydrophobic films on aluminum foil for practical industrial applications.


Sign in / Sign up

Export Citation Format

Share Document