scholarly journals Medical diagnosis of COVID-19 using blood tests and machine learning

2022 ◽  
Vol 2161 (1) ◽  
pp. 012017
Author(s):  
Krishnaraj Chadaga ◽  
Srikanth Prabhu ◽  
K Vivekananda Bhat ◽  
Shashikiran Umakanth ◽  
Niranjana Sampathila

Abstract Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2), colloquially known as Coronavirus surfaced in late 2019 and is an extremely dangerous disease. RT-PCR (Reverse transcription Polymerase Chain Reaction) tests are extensively used in COVID-19 diagnosis. However, they are prone to a lot of false negatives and erroneous results. Hence, alternate methods are being researched and discovered for the detection of this infectious disease. We diagnose and forecast COVID-19 with the help of routine blood tests and Artificial Intelligence in this paper. The COVID-19 patient dataset was obtained from Israelita Albert Einstein Hospital, Brazil. Logistic regression, random forest, k nearest neighbours and Xgboost were the classifiers used for prediction. Since the dataset was extremely unbalanced, a technique called SMOTE was used to perform oversampling. Random forest obtained optimal results with an accuracy of 92%. The most important parameters according to the study were leukocytes, eosinophils, platelets and monocytes. This preliminary COVID-19 detection can be utilised in conjunction with RT-PCR testing to improve sensitivity, as well as in further pandemic outbreaks.

2020 ◽  
Author(s):  
Thomas Tschoellitsch ◽  
Martin Dünser ◽  
Carl Böck ◽  
Karin Schwarzbauer ◽  
Jens Meier

Abstract Objective The diagnosis of COVID-19 is based on the detection of SARS-CoV-2 in respiratory secretions, blood, or stool. Currently, reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to test for SARS-CoV-2. Methods In this retrospective cohort analysis, we evaluated whether machine learning could exclude SARS-CoV-2 infection using routinely available laboratory values. A Random Forests algorithm with 1353 unique features was trained to predict the RT-PCR results. Results Out of 12,848 patients undergoing SARS-CoV-2 testing, routine blood tests were simultaneously performed in 1528 patients. The machine learning model could predict SARS-CoV-2 test results with an accuracy of 86% and an area under the receiver operating characteristic curve of 0.90. Conclusion Machine learning methods can reliably predict a negative SARS-CoV-2 RT-PCR test result using standard blood tests.


Author(s):  
Paul Wikramaratna ◽  
Robert S Paton ◽  
Mahan Ghafari ◽  
José Lourenço

AbstractReverse transcription-polymerase chain reaction (RT-PCR) assays are used to test patients and key workers for infection with the causative SARS-CoV-2 virus. RT-PCR tests are highly specific and the probability of false positives is low, but false negatives can occur if the sample contains insufficient quantities of the virus to be successfully amplified and detected. The amount of virus in a swab is likely to vary between patients, sample location (nasal, throat or sputum) and through time as infection progresses. Here, we analyse publicly available data from patients who received multiple RT-PCR tests and were identified as SARS-CoV-2 positive at least once. We identify that the probability of a positive test decreases with time after symptom onset, with throat samples less likely to yield a positive result relative to nasal samples. Empirically derived distributions of the time between symptom onset and hospitalisation allowed us to comment on the likely false negative rates in cohorts of patients who present for testing at different clinical stages. We further estimate the expected numbers of false negative tests in a group of tested individuals and show how this is affected by the timing of the tests. Finally, we assessed the robustness of these estimates of false negative rates to the probability of false positive tests. This work has implications both for the identification of infected patients and for the discharge of convalescing patients who are potentially still infectious.


2021 ◽  
Author(s):  
William Stokes ◽  
Byron M. Berenger ◽  
Danielle Portnoy ◽  
Brittney Scott ◽  
Jonas Szelewicki ◽  
...  

Abstract BACKGROUND Point of Care SARS-CoV-2 antigen tests, such as the Abbott Panbio, have great potential to help combat the COVID-19 pandemic. The Panbio is Health Canada approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of COVID-19 symptom onset(s). METHODS Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study. Paired nasopharyngeal (NP), throat, and saliva swabs were collected, with one paired swab tested immediately with the Panbio, and the other transported in universal transport media and tested using reverse-transcriptase polymerase chain reaction (RT-PCR). We also prospectively evaluated results from assessment centres. For those individuals, an NP swab was collected for Panbio testing and paired with RT-PCR results from parallel NP or throat swabs. RESULTS 145 individuals were included in the study. Collection of throat and saliva was stopped early due to poorer performance (throat sensitivity 57.7%, n = 61, and saliva sensitivity 2.6%, n = 41). NP swab sensitivity was 87.7% [n = 145, 95% confidence interval (CI) 81.0% − 92.7%]. There were 1,641 symptomatic individuals tested by Panbio in assessment centres, with 268/1641 (16.3%) positive for SARS-CoV-2. There were 37 false negatives and 2 false positives, corresponding to a sensitivity and specificity of 86.1% [95% CI 81.3% − 90.0%] and 99.9% [95% CI 99.5% − 100.0%], respectively. CONCLUSIONS The Panbio test reliably detects most cases of SARS-CoV-2 from adults in the community setting presenting within 7 days of symptom onset using nasopharyngeal swabs. Throat and saliva swabs are not reliable specimens for the Panbio.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

1994 ◽  
Vol 72 (05) ◽  
pp. 762-769 ◽  
Author(s):  
Toshiro Takafuta ◽  
Kingo Fujirmura ◽  
Hironori Kawano ◽  
Masaaki Noda ◽  
Tetsuro Fujimoto ◽  
...  

SummaryGlycoprotein V (GPV) is a platelet membrane protein with a molecular weight of 82 kD, and one of the leucine rich glycoproteins (LRG). By reverse transcription-polymerase chain reaction (RT-PCR), GPV cDNA was amplified from mRNA of platelets and megakaryocytic cell lines. However, since there are few reports indicating whether GPV protein is expressed in megakaryocytes as a lineage and maturation specific protein, we studied the GPV expression at the protein level by using a novel monoclonal antibody (1D9) recognizing GPV. Flow cytometric and immunohistochemical analysis indicated that GPV was detected on the surface and in the cytoplasm of only the megakaryocytes in bone marrow aspirates. In a megakaryocytic cell line UT-7, GPV antigen increased after treatment with phorbol-12-myri-state-13-acetate (PMA). These data indicate that only megakaryocytes specifically express the GPV protein among hematopoietic cells and that the expression of GPV increases with differentiation of the megakaryocyte as GPIb-IX complex.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 371-374 ◽  
Author(s):  
R. Gajardo ◽  
R. M. Pintó ◽  
A. Bosch

A reverse transcription polymerase chain reaction (RT-PCR) assay is described that has been developed for the detection and serotyping of group A rotavirus in stool specimens and concentrated and non-concentrated sewage specimens.


2021 ◽  
Vol 11 (02) ◽  
pp. e80-e83
Author(s):  
Benjamin R. Harding ◽  
Farha Vora

AbstractWe present a case of a term infant born to an asymptomatic mother at a community hospital who required transfer to a local neonatal intensive care unit (NICU) immediately after birth for respiratory distress. The infant was tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at 24 hours of life by reverse transcription polymerase chain reaction (RT-PCR) testing due to the absence of prenatal maternal COVID-19 testing and was found to be positive for SARS-CoV-2 at that time. A second RT-PCR test was obtained on the infant on day of life (DOL) 4 and was also positive, confirming an accurate diagnosis of COVID-19 disease in the infant. Both the mother and father remained asymptomatic and concomitantly tested negative for SARS-CoV-2 on two separate occasions. The infant subsequently clinically improved and was discharged without any complications. This case raises the potential concern for two unreported newborn issues related to COVID-19. First, the potential unreliability of negative maternal COVID-19 testing surrounding the time of delivery as it relates to routine newborn testing and isolation needs, and second, if the negative material testing was accurate, this raises the concern for a potential case of nosocomial COVID-19 infection within the first 24 hours of life.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fatemeh Khatami ◽  
Mohammad Saatchi ◽  
Seyed Saeed Tamehri Zadeh ◽  
Zahra Sadat Aghamir ◽  
Alireza Namazi Shabestari ◽  
...  

AbstractNowadays there is an ongoing acute respiratory outbreak caused by the novel highly contagious coronavirus (COVID-19). The diagnostic protocol is based on quantitative reverse-transcription polymerase chain reaction (RT-PCR) and chests CT scan, with uncertain accuracy. This meta-analysis study determines the diagnostic value of an initial chest CT scan in patients with COVID-19 infection in comparison with RT-PCR. Three main databases; PubMed (MEDLINE), Scopus, and EMBASE were systematically searched for all published literature from January 1st, 2019, to the 21st May 2020 with the keywords "COVID19 virus", "2019 novel coronavirus", "Wuhan coronavirus", "2019-nCoV", "X-Ray Computed Tomography", "Polymerase Chain Reaction", "Reverse Transcriptase PCR", and "PCR Reverse Transcriptase". All relevant case-series, cross-sectional, and cohort studies were selected. Data extraction and analysis were performed using STATA v.14.0SE (College Station, TX, USA) and RevMan 5. Among 1022 articles, 60 studies were eligible for totalizing 5744 patients. The overall sensitivity, specificity, positive predictive value, and negative predictive value of chest CT scan compared to RT-PCR were 87% (95% CI 85–90%), 46% (95% CI 29–63%), 69% (95% CI 56–72%), and 89% (95% CI 82–96%), respectively. It is important to rely on the repeated RT-PCR three times to give 99% accuracy, especially in negative samples. Regarding the overall diagnostic sensitivity of 87% for chest CT, the RT-PCR testing is essential and should be repeated to escape misdiagnosis.


Intervirology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Salman Khan ◽  
Syed Asad Ali Shah ◽  
Syed Muhammad Jamal

<b><i>Background:</i></b> Foot-and-mouth disease (FMD) is an infectious and highly contagious disease of cloven-hoofed domestic and wild animals, causing heavy economic losses to the livestock industry. Rapid and reliable diagnosis of the disease is essential for the implementation of effective control measures. This study compared sandwich enzyme-linked immunosorbent assay (S-ELISA) and conventional reverse transcription polymerase chain reaction (RT-PCR) for the diagnosis of FMD. <b><i>Methods:</i></b> A total of 60 epithelial samples from suspected cases of FMD were tested using both S-ELISA and RT-PCR assays. The level of agreement between the assays was assessed by calculating the Kappa value. <b><i>Results:</i></b> S-ELISA detected 38 (63%) samples positive for FMD virus (FMDV). Being predominant, serotype O was detected in 22 (57.9%) of the total samples tested positive, whereas 9 (23.7%) and 7 (18.4%) samples were found positive for serotypes A and Asia-1, respectively. RT-PCR detected viral genome in 51 (85%) of the samples using pan-FMDV primers set, 1F/1R. Thirty-six samples were found positive and 7 negative by both the tests. The level of agreement between the tests was assessed by calculating the Kappa value, which was found to be fair (Kappa value = 0.303 and 95% CI = 0.089; 0.517) and significant (<i>p</i> = 0.009). However, 2 samples, which were found positive on S-ELISA tested negative on RT-PCR. This may be attributed to the presence of nucleotide mismatch(es) in the primer-binding sites that may have resulted in failure of amplification of the viral genome. The serotype-specific RT-PCR assays not only confirmed serotyping results of S-ELISA but were also able to establish serotype in 9 S-ELISA-negative but pan-FMDV RT-PCR-positive samples. <b><i>Conclusions:</i></b> The RT-PCR assay contributes significantly to establishing a quick, sensitive, and definitive diagnosis of FMD in resource-constrained countries. Samples giving negative results in S-ELISA should be tested in RT-PCR for the disease detection and virus typing.


Sign in / Sign up

Export Citation Format

Share Document