scholarly journals Low-pressure low-frequency inductive discharge with ferrite cores for large-scale plasma processing

2017 ◽  
Vol 830 ◽  
pp. 012054
Author(s):  
M V Isupov ◽  
A V Fedoseev ◽  
G I Sukhinin ◽  
V A Pinaev
2021 ◽  
Vol 2119 (1) ◽  
pp. 012115
Author(s):  
M V Isupov

Abstract New experimental data on the plasma density profiles have been obtained for a low-frequency (100 kHz) distributed ferromagnetic enhanced inductive plasma source at different locations of inductive discharges. An ability to control the plasma density profiles in a large gas discharge chamber in order to achieve a uniform treatment of a substrate is demonstrated. The differences between the obtained results and literature data for a distributed ferromagnetic enhanced inductive plasma source combined with a radio-frequency inductive discharge are discussed.


2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2021 ◽  
Vol 11 (15) ◽  
pp. 6688
Author(s):  
Jesús Romero Leguina ◽  
Ángel Cuevas Rumin ◽  
Rubén Cuevas Rumin

The goal of digital marketing is to connect advertisers with users that are interested in their products. This means serving ads to users, and it could lead to a user receiving hundreds of impressions of the same ad. Consequently, advertisers can define a maximum threshold to the number of impressions a user can receive, referred to as Frequency Cap. However, low frequency caps mean many users are not engaging with the advertiser. By contrast, with high frequency caps, users may receive many ads leading to annoyance and wasting budget. We build a robust and reliable methodology to define the number of ads that should be delivered to different users to maximize the ROAS and reduce the possibility that users get annoyed with the ads’ brand. The methodology uses a novel technique to find the optimal frequency capping based on the number of non-clicked impressions rather than the traditional number of received impressions. This methodology is validated using simulations and large-scale datasets obtained from real ad campaigns data. To sum up, our work proves that it is feasible to address the frequency capping optimization as a business problem, and we provide a framework that can be used to configure efficient frequency capping values.


1998 ◽  
Vol 58 (3) ◽  
pp. 3768-3776 ◽  
Author(s):  
B. Weyssow ◽  
J. D. Reuss ◽  
J. Misguich

Sign in / Sign up

Export Citation Format

Share Document