Design of MIRA, a low-noise pixelated ASIC for the readout of micro-channel plates

2022 ◽  
Vol 17 (01) ◽  
pp. C01047
Author(s):  
E. Fabbrica ◽  
M. Carminati ◽  
D. Butta ◽  
M. Uslenghi ◽  
M. Fiorini ◽  
...  

Abstract We present the design of the first prototype of MIRA (MIcro-channel plate Readout ASIC) that has been designed to read out Micro-Channel Plates (MCP), in particular for UV spectroscopy. MIRA will be able to detect the cloud of electrons generated by each photon interacting with the MCP, sustaining high local and global count rates to fully exploit the MCP intrinsic dynamic range with low dead time. The main rationale that guided the electronics design is the reduction of the input Equivalent Noise Charge (ENC) in order to allow operations with lower MCP gain, thus improving its lifetime, crucial aspect for long missions in space. MIRA features two selectable analog processing times, 133 ns or 280 ns (i.e. fast mode or slow mode), granting a count rate per pixel of 100 kcps. Moreover, it shows an Equivalent Noise Charge ENC = 17 e r m s − . A spatial resolution of 35 μm and an operation with zero dead time, due to the readout, are targeted. The low noise, high count rate and high spatial resolution requirements are expected by keeping a compact pixel size (35 μm × 35 μm) for a total of 32 × 32 pixels in a 2 mm × 2 mm ASIC area. In this work, the ASIC design is described.

2005 ◽  
Vol 21 (1) ◽  
pp. 91-124 ◽  
Author(s):  
John R. Evans ◽  
Robert H. Hamstra ◽  
Christoph Kündig ◽  
Patrick Camina ◽  
John A. Rogers

The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ±2 g, or 102 dB between ±4 g. It is linear to <1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (<1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ∼3 km—one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ∼75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper.


2021 ◽  
Author(s):  
Matthew Al Disi ◽  
Alireza Mohammad Zaki ◽  
Qinwen Fan ◽  
Stoyan Nihtianov

2016 ◽  
Vol 11 (03) ◽  
pp. T03002-T03002
Author(s):  
K. Hu ◽  
F. Li ◽  
F. Liang ◽  
L. Chen ◽  
G. Jin

1993 ◽  
Vol 37 ◽  
pp. 405-411
Author(s):  
C. S. Rossington ◽  
N. W. Madden ◽  
K. Chapman

AbstractA new x-ray spectrometer has been constructed which incorporates a novel large area, low capacitance Si(Li) detector and a low noise JFET (junction field effect transistor) preamplifier. The spectrometer operates at high count Tates without the conventional compromise in energy resolution. For example, at an amplifier peaking time of 1 p.sec and a throughput count rate of 145,000 counts sec-1, the energy resolution at 5.9 keV is 220 eV FWHM. Commercially available spectrometers utilizing conventional geometry Si(Li) detectors with areas equivalent to the new detector have resolutions on the order of 540 eV under the same conditions. Conventional x-ray spectrometers offering high energy resolution must employ detectors with areas one-tenth the size of the new LBL detector (20 mm2 compared with 200 mm2). However, even with the use of the smaller area detectors, the energy resolution of a commercial system is typically limited to approximately 300 eV (again, at 1 μsec and 5.9 keV) due to the noise of the commercially available JFET's. The new large area detector is useful in high count rate applications, but is also useful in the detection of weak photon signals, in which it is desirable to subtend as large an angle of the available photon flux as possible, while still maintaining excellent energy resolution. X-ray fluorescence data from die new spectrometer is shown in comparison to a commercially available system in the analysis of a dilute muhi-element material, and also in conjunction with high count rate synchrotron EXAFS applications.


2015 ◽  
Author(s):  
Mirko Sanzaro ◽  
Niccolò Calandri ◽  
Alessandro Ruggeri ◽  
Carmelo Scarcella ◽  
Gianluca Boso ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Martina Stella ◽  
Arthur J. A. T. Braat ◽  
Marnix G. E. H. Lam ◽  
Hugo W. A. M. de Jong ◽  
Rob van Rooij

Abstract Background High activities of holmium-166 (166Ho)–labeled microspheres are used for therapeutic radioembolization, ideally directly followed by SPECT imaging for dosimetry purposes. The resulting high-count rate potentially impacts dead time, affecting the image quality and dosimetric accuracy. This study assesses gamma camera performance and SPECT image quality at high 166Ho activities of several GBq. To this purpose, the liver compartment, including two tumors, of an anthropomorphic phantom was filled with 166Ho-chloride, with a tumor to non-tumorous liver activity concentration ratio of 10:1. Multiple SPECT/CT scans were acquired over a range of activities up to 2.7 GBq. Images were reconstructed using a commercially available protocol incorporating attenuation and scatter correction. Dead time effects were assessed from the observed count rate in the photopeak (81 keV, 15% width) and upper scatter (118 keV, 12% width) window. Post reconstruction, each image was scaled with an individual conversion factor to match the known total activity in the phantom at scanning time. The resulting activity concentration was measured in the tumors and non-tumorous liver. The image quality as a function of activity was assessed by a visual check of the absence of artifacts by a nuclear medicine physician. The apparent lung shunt fraction (nonzero due to scatter) was estimated on planar and SPECT images. Results A 20% count loss due to dead time was observed around 0.7 GBq in the photopeak window. Independent of the count losses, the measured activity concentration was up to 100% of the real value for non-tumorous liver, when reconstructions were normalized to the known activity at scanning time. However, for tumor spheres, activity concentration recovery was ~80% at the lowest activity, decreasing with increasing activity in the phantom. Measured lung shunt fractions were relatively constant over the considered activity range. Conclusions At high 166Ho count rate, all images, visually assessed, presented no artifacts, even at considerable dead time losses. A quantitative evaluation revealed the possibility of reliable dosimetry within the healthy liver, as long as a post-reconstruction scaling to scanning activity is applied. Reliable tumor dosimetry, instead, remained hampered by the dead time.


Sign in / Sign up

Export Citation Format

Share Document