Unifying polar and nematic active matter: Emergence and co-existence of half-integer and full-integer topological defects

Author(s):  
Aboutaleb Amiri ◽  
Romain Mueller ◽  
Amin Doostmohammadi

Abstract The presence and significance of active topological defects is increasingly realised in diverse biological and biomimetic systems. We introduce a continuum model of polar active matter, based on conservation laws and symmetry arguments, that recapitulates both polar and apolar (nematic) features of topological defects in active turbulence. Using numerical simulations of the continuum model, we demonstrate the emergence of both half- and full-integer topological defects in polar active matter. Interestingly, we find that crossover from active turbulence with half- to full-integer defects can emerge with the coexistence region characterized by both defect types. These results put forward a minimal, generic framework for studying topological defect patterns in active matter which is capable of explaining the emergence of half-integer defects in polar systems such as bacteria and cell monolayers, as well as predicting the emergence of coexisting defect states in active matter.

2021 ◽  
Author(s):  
Guanming Zhang ◽  
Julia Mary Yeomans

We use a computational phase-field model together with analytical analysis to study how inter-cellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. Contractile inter-cellular interactions lead to cell elongation, nematic ordering and active turbulence, characterised by motile topological defects. Extensile interactions result in frustration, and perpendicular cell orientations become more prevalent. Furthermore, we show that contractile behaviour can change to extensile behaviour if anisotropic fluctuations in cell shape are considered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshifumi Asakura ◽  
Yohei Kondo ◽  
Kazuhiro Aoki ◽  
Honda Naoki

AbstractCollective cell migration is a fundamental process in embryonic development and tissue homeostasis. This is a macroscopic population-level phenomenon that emerges across hierarchy from microscopic cell-cell interactions; however, the underlying mechanism remains unclear. Here, we addressed this issue by focusing on epithelial collective cell migration, driven by the mechanical force regulated by chemical signals of traveling ERK activation waves, observed in wound healing. We propose a hierarchical mathematical framework for understanding how cells are orchestrated through mechanochemical cell-cell interaction. In this framework, we mathematically transformed a particle-based model at the cellular level into a continuum model at the tissue level. The continuum model described relationships between cell migration and mechanochemical variables, namely, ERK activity gradients, cell density, and velocity field, which could be compared with live-cell imaging data. Through numerical simulations, the continuum model recapitulated the ERK wave-induced collective cell migration in wound healing. We also numerically confirmed a consistency between these two models. Thus, our hierarchical approach offers a new theoretical platform to reveal a causality between macroscopic tissue-level and microscopic cellular-level phenomena. Furthermore, our model is also capable of deriving a theoretical insight on both of mechanical and chemical signals, in the causality of tissue and cellular dynamics.


2010 ◽  
Vol 2010 ◽  
pp. 1-7
Author(s):  
Bohua Sun

The intrinsic feature of graphene honeycomb lattice is defined by its chiral index (n,m), which can be taken into account when using molecular dynamics. However, how to introduce the index into the continuum model of graphene is still an open problem. The present manuscript adopts the continuum shell model with single director to describe the mechanical behaviors of graphene. In order to consider the intrinsic features of the graphene honeycomb lattice—chiral index (n,m), the chiral-tube vectors of graphene in real space have been used for construction of reference unit base vectors of the shell model; therefore, the formulations will contain the chiral index automatically, or in an explicit form in physical components. The results are quite useful for future studies of graphene mechanics.


1994 ◽  
Vol 506 (2) ◽  
pp. 92-106
Author(s):  
H. W. Streitwolf ◽  
H. Puff

2000 ◽  
Author(s):  
Mehrdad Massoudi ◽  
Tran X. Phuoc

Abstract In this paper we study the flow of granular materials between two horisontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (1990), where the material parameters are derived using the kinetic theory model proposed by Boyle and Massoudi (1990). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Behzad ◽  
Benjamin Herrmann ◽  
Williams R. Calderón-Muñoz ◽  
José M. Cardemil ◽  
Rodrigo Barraza

Purpose Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress. Design/methodology/approach The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events. Findings The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions. Originality/value Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.


2011 ◽  
Vol 11 (5&6) ◽  
pp. 444-455
Author(s):  
Knut Bakke ◽  
Cláudio Furtado

In this work, we propose a new formulation allowing to realize the holonomic quantum computation with neutral particles with a permanent magnetic dipole moments interacting with an external electric field in the presence of a topological defect. We show that both the interaction of the electric field with the magnetic dipole moment and the presence of topological defect generate independent contributions to the geometric quantum phases which can be used to describe any arbitrary rotation on the magnetic dipole moment without using the adiabatic approximation.


1991 ◽  
Vol 113 (1) ◽  
pp. 79-84 ◽  
Author(s):  
J. F. Wilson ◽  
U. Mahajan ◽  
S. A. Wainwright ◽  
L. J. Croner

A continuum model is presented that relates the trunk parameters of loading, geometry, and muscle structure to the necessary conditions of static equilibrium. Linear theory for stress-strain behavior is used to describe an elephant trunk for an incremental displacement as the animal slowly lifts a weight at the trunk tip. With this analysis and experimental values for the trunk parameters, the apparent trunk stiffness Ea is estimated for the living animal. For an Asian elephant with a maximum compression strain of 33 percent, Ea is of the order of 106 N/m2. The continuum model is quite general and may be applied to similar nonskeletal appendages and bodies of other animals.


Sign in / Sign up

Export Citation Format

Share Document