scholarly journals Experimental investigation on the influencing factors of the thermal response test using actively heated fiber optics

2021 ◽  
Vol 861 (6) ◽  
pp. 062103
Author(s):  
Zhuang Wei ◽  
Kai Gu ◽  
Bo Zhang ◽  
Haibo Qi ◽  
Lin Jiang ◽  
...  
2021 ◽  
Author(s):  
Kai Gu ◽  
Bo Zhang ◽  
Bin Shi ◽  
Chun Liu ◽  
Peter Bayer ◽  
...  

<p>In the pursuit of sustainable development and the mitigation of climate change, shallow geothermal energy has been widely recognized as a type of clean energy with great potential. Accurate estimation of thermal ground properties is needed to optimally apply shallow geothermal energy technologies, which are of growing importance for the heating and cooling sector. A special challenge is posed by the often significant heterogeneity and variability of the geological media at a site.</p><p>As an innovative investigation method, we focus on the actively heated fiber optics-based thermal response test (ATRT) and its application in a borehole in Changzhou, China. A copper mesh heated optical cable (CMHC), which both serves as a heating source and a temperature sensing cable, was applied in the borehole. By inducing the electric current to the cable at a relatively low power of 26 W/m, the in-situ heating process was recorded at high depth resolution. This information serves to infer the thermal conductivity distribution along the borehole. The presented field experience reveals that the temperature rise in the early phase of the test should not be used due to initial heat accumulation caused by the outer jacket of the CMHC. The comparison of these results with those of a conventional thermal response test (TRT) and a distributed thermal response test (DTRT) in the same borehole confirmed that the ATRT result is reliable (with a difference less than 5% and 1%, respectively). Most importantly, this novel method affords much less energy and testing time.</p><p>Additionally, to estimate the uncertainty and limits associated with the method, a 2D axisymmetric numerical model based on COMSOL Multiphysics® has been developed. The results indicate that an accurate calculated thermal conductivity requires heating duration to be in the range of 90~400 min considering test efficiency and cost. Our study promotes ATRT as an advanced geothermal field investigation method and it also extends the applicability of the thermal response test as a downhole tool for measurement of soil hydraulic properties.</p>


2020 ◽  
Vol 134 ◽  
pp. 110336
Author(s):  
Bo Zhang ◽  
Kai Gu ◽  
Bin Shi ◽  
Chun Liu ◽  
Peter Bayer ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4379
Author(s):  
Max Hesselbrandt ◽  
Mikael Erlström ◽  
Daniel Sopher ◽  
Jose Acuna

Assessing the optimal placement and design of a large-scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre-site investigation for a potential high temperature borehole thermal energy storage (HT-BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT-BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT-BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT-BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre-investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low-Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone-based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT-BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.


Author(s):  
Wei Song ◽  
Ziteng Li ◽  
Yue Jin ◽  
Bo Zhang ◽  
Tuanfeng Zheng

Sign in / Sign up

Export Citation Format

Share Document