scholarly journals Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair

Author(s):  
Irina Donkova ◽  
Yuriy Yakubovskiy ◽  
Mikhail Kruglov
ICPTT 2011 ◽  
2011 ◽  
Author(s):  
Jianlin Ma ◽  
Liqiong Chen ◽  
PengpPh.D. Zhang ◽  
Sizhong Wang
Keyword(s):  

2021 ◽  
Vol 12 (3S) ◽  
pp. 792-804
Author(s):  
A. G. Dmitriev ◽  
K. G. Levi ◽  
A. G. Vakhromeev

Production of natural gas and crude oil in the eastern regions of Russia was accelerated in the past decade, and both the upstream and midstream segments of the oil and gas industry continue to grow at a fast pace. Innovative solutions are needed for engineering and construction surveys aimed to justify options for choosing routes and methods for laying underwater pipeline sections across large rivers and water reservoirs. In our region, positive experience has been gained by employing modern technologies to optimize routing and reduce the costs of detailed surveys. In the project of the Kovykta – Sayansk – Angarsk – Irkutsk gas pipeline construction, an optimal route across the Bratsk water reservoir was chosen based on the results of several stages of investigation, including continuous seismic profiling and side-scan sonar scanning of the reservoir bed. At the first stage, the mosaic maps of side-scan sonograms and a 3D digital model of the reservoir bed bathymetry were constructed and used to develop and propose three options for the gas pipeline design and its route across the reservoir area. At the second stage, detailed underwater and onshore geophysical and drilling operations were carried out along the proposed routes. Based on the transverse profiles, a decision was taken to lay the pipeline section across the reservoir area in a trench along the northern route, which was justified as an economically and technologically optimal solution. In the winter period when the water reservoir surface was covered with thick ice, the northern route was investigated in detail by drilling and seismic survey operations using vertical seismometer cable assemblies and the inverse travel time curve technique. With reference to the velocity law, the travel time sections were processed and converted into depth profiles. A petrophysical model of bottom sediments was constructed, and a scheme was developed to ensure proper processing and interpreting of seismic and acoustic data. Four structural-material complexes were identified: modern silts; underwater eluvial and alluvial deposits; disintegrated and low-strength bedrocks of the Upper Lena Formation; and unaltered bedrock sandstones and siltstones. The continuous seismic profiles and the data from the vertical seismometer cable assemblies were interpreted, and a neotectonic map of bottom sediments was constructed. By analyzing the fault kinematics, it was revealed that normal faults and reverse faults with low-amplitude horizontal shear dominated in the study area; the mapped faults were mainly rootless structures; and displacements along the faults occurred due to a laminar flow of the Cambrian salt layers. An increase in tectonic activity from north to south was explained by the correspondingly degraded strength properties of the bedrocks. Modern neotectonic structures detected from the survey results gave evidence that that the hydrostatic pressure increased after the reservoir had been filled with water, and the phenomenon of reservoir-related seismicity was observed in the study area. Based on the comprehensive geological and geophysical survey data, the geological and engineering conditions of the proposed construction sites were clarified, and the most appropriate route and design of the gas pipeline section across the reservoir area was approved. This study provided the pipeline designers with the qualitative and quantitative information on the phenomena and factors complicating the conditions for laying the gas pipeline in the study area.


2018 ◽  
Vol 159 ◽  
pp. 01058
Author(s):  
Mochamad Safarudin ◽  
Joga Dharma Setiawan

Construction of new highways, buildings, airport runways and other facilities is often planned at locations where aboveground pipelines are present. Relocating such lines can be extremely expensive in terms of shutdown time and new pipeline materials. Lowering this existing pipeline can have big cost benefits. The line can be lowered while remaining in service with no lost production and the cost of such lowering an existing pipeline section is relatively cheap. In this paper, the calculation method with both analytically and numerically are discussed and explained in a 28 in pipeline lowering process while keep the pipeline is safe and still in-service.


2021 ◽  
Author(s):  
Xi Liu ◽  
Shimin Zhang ◽  
Qingxin Ding ◽  
Xiaoxiao Zhu ◽  
Shuai Chen ◽  
...  
Keyword(s):  
Oil Gas ◽  

2009 ◽  
Vol 79-82 ◽  
pp. 1169-1172 ◽  
Author(s):  
Yu Hua Chen ◽  
Yong Wang ◽  
Zheng Fang Wang

In-service welding is a kind of important method to ensure the integrality of oil gas pipeline and the thermal cycle of which is significant for repairing. Used SYSWELD to establish model and simulate thermal cycle of in-service welding on X70 steel gas pipeline, compared thermal cycles of in-service welding and air-cooling welding, studied the influence of gas pressure and flow rate on thermal cycle. The result shows that peak temperature of the coarse grain in heat affected zone (CGHAZ) of in-service welding is similar to air cooling welding, but the cooling time of t8/5, t8/3 and t8/1 decreases at certain degree. Peak temperature of CGHAZ of in-service welding doesn’t vary match with gas pressure and flow rate either. t8/5, t8/3 and t8/1 decrease when gas pressure increases. t8/5 varies with the gas pressure linearly. When the pressure is less than 4MPa, t8/3 and t8/1 decrease rapidly while gas pressure increases. When the pressure is more than 4MPa, t8/3 and t8/1 decrease slowly while gas pressure increases. t8/5, t8/3 and t8/1 decrease when the flow rate increases. When gas flow rate is less than 10m/s, t8/5, t8/3 and t8/1 decrease rapidly while flow rate increases. When gas flow rate is more than 10m/s, t8/5, t8/3 and t8/1 decrease slowly while flow rate increases.


Author(s):  
Dong Woo Kim ◽  
Mohd Hairil Mohd ◽  
Byeong Joon Lee ◽  
Do Kyun Kim ◽  
Jung Kwan Seo ◽  
...  

Precisely evaluation of the reliability of aging structure is essential, particularly in the oil gas industry where inaccurate predictions of structural performance may have significant hazardous consequences. Related to this issue, it is important to predict the corrosion behavior of the gas pipeline structure used in the production of gas in subsea area. As corrosion is concerned, the effects of pipeline failure due to significant reduction of burst strength will make it hard for the pipeline operator to maintain the serviceability of pipelines. Therefore related to this problem, the resistance service of the pipeline is assessed by means of burst strength capacity. In this study, the critical part of the corrosion along 2.4 km pipeline is assessed using two approaches; empirical design codes formula and ANSYS numerical analysis. The future integrity of the pipeline is then assessed to predict the remaining year in service for the aging pipeline. The results and outcomes of the present study will be useful for evaluating the pipeline integrity as well as the prediction of the remaining life of in service aging pipeline structures.


Author(s):  
G. Kh. Murzakhanov ◽  
A. A. Barsukov ◽  
A. S. Semenov ◽  
A. V. Makshin

Article considered main stages of strength calculation of the steel gas pipeline under the Novodevichy Duker project. Specialists of the Moscow city Center used the basis of the finite element for calculation. The list of tasks consists of: 1. Strength calculation of the underground laying gas pipeline section. 2. The calculation of the stability of the two vertical sections. According to the results of strength calculation, specialists made the conclusion about ensuring the strength and stability of the considered section of the gas pipeline.


Sign in / Sign up

Export Citation Format

Share Document