scholarly journals Estimation of Total Suspended Sediment Solid in Porong River Waters Using Multitemporal Satellite Imagery

2021 ◽  
Vol 936 (1) ◽  
pp. 012006
Author(s):  
Z N Ghuvita Hadi ◽  
T Hariyanto ◽  
N Hayati

Abstract Monitoring the concentration of Total Suspended Solid (TSS) is one method to determine water quality, because a high TSS value indicates a high level of pollution. Remote sensing data can be used effectively in generating suspended sediment concentrations. Nowdays, Google Earth Engine platform has provided a large collection of remote sensing data. Therefore, this study uses Google Earth Engine which is processed for free and aims to calculate the TSS value in the Kali Porong area. This research was conducted multitemporal in the last ten years, namely from 2013-2021 using multitemporal satellite imagery landsat-8 and sentinel-2 by applying empirical algorithms for calculating TSS. The results of this study are the value of TSS concentration at each sample point and a multitemporal TSS concentration distribution map. The year 2016, 2017, and 2021, the distribution of TSS concentration values was higher than in other years. At the sample point, the lowest TSS concentration value was 16.55 mg/L in 2013. Meanwhile, the highest TSS concentration value of 266.33 mg/L occurred in 2014 precisely in the Porong River estuary area which is the border area between land and water. the sea so that a lot of TSS material is concentrated in the area due to waves and ocean currents.

2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


Author(s):  
Tigran Shahbazyan

The article considers the methodology of monitoring specially protected natural areas using remote sensing data. The research materials are satellite images of the Landsat 5 and Landsat 8 satellites, obtained from the resource of the US Geological Survey. The key areas of the study were 3 specially protected areas located within the boundaries of the forest-steppe landscapes of the Stavropol upland, the reserves «Alexandrovskiy», «Russkiy Les», «Strizhament». The space survey materials were selected for the period 1991–2020, and the data from the summer seasons were used. The NDVI index is chosen as the method of processing the spectral channels of satellite imagery. To integrate long-term satellite imagery into a single raster image, the method of variance of the variation series for the NDVI index was used. The article describes an algorithm for processing satellite images, which allows us to identify the features of the dynamics of the vegetation state of the studied territory for the period 1991–2020. The bitmap image constructed by means of the variance of the NDVI index was classified by the quantile method, to translate numerical values into classes with qualitative characteristics. There were 4 classes of the territory according to the degree of dynamism of the vegetation state: “stable”, “slightly variable”, “moderately variable”, “highly variable”. The paper highlights the factors of landscape transformation, including natural and anthropogenic ones. In the course of the study, the determining influence of anthropogenic factors of transformation was noted. The greatest impact is on the reserve «Alexandrovskiy», the least on the reserve «Russkiy Les», in the reserve «Strizhament» the impact is expressed locally. The paper identifies the leading anthropogenic factors of vegetation transformation, based on their influence on vegetation.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Majid Aghlmand ◽  
Gordana Kaplan

Urbanizationis accompanied by rapid social and economic development, while the process of urbanization causes the degradation of the natural ecology. Direct loss in vegetation biomass from areas with a high probability of urban expansion can contribute to the total emissions from tropical deforestation and land-use change. Monitoring of urban expansion is essential for more efficient urban planning, protecting the ecosystem and the environment. In this paper, we use remote sensing data aided by Google Earth Engine (GEE) to evaluate the urban expansion of the city of Isfahan in the last thirty years. Thus, in this paper we use Landsat satellite images from 1986 and 2019, integrated into GEE, implementing Support vector machine (SVM) classification method. The accuracy assessment for the classified images showed high accuracy (95-96%), while the results showed a significant increase in the urban area of the city of Isfahan, occupying more than 70% of the study area. For future studies, we recommend a more detailed investigation about the city expansion and the negative impacts that may occur due to urban expansion.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 100
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Siti Saringatin ◽  
Pramaditya Wicaksono ◽  
Bachtiar Wahyu Mutaqin ◽  
...  

Coastal regions are one of the most vulnerable areas to the effects of global warming, which is accompanied by an increase in mean sea level and changing shoreline configurations. In Indonesia, the socioeconomic importance of coastal regions where the most populated cities are located is high. However, shoreline changes in Indonesia are relatively understudied. In particular, detailed monitoring with remote sensing data is lacking despite the abundance of datasets and the availability of easily accessible cloud computing platforms such as the Google Earth Engine that are able to perform multi-temporal and multi-sensor mapping. Our study aimed to assess shoreline changes in East Java Province Indonesia from 2000 to 2019 using variables derived from a multi-sensor combination of optical remote sensing data (Landsat-7 ETM and Landsat-8 OLI) and radar data (ALOS Palsar and Sentinel-1 data). Random forest and GMO maximum entropy (GMO-Maxent) accuracy was assessed for the classification of land and water, and the land polygons from the best algorithm were used for deriving shorelines. In addition, shoreline changes were quantified using Digital Shoreline Analysis System (DSAS). Our results showed that coastal accretion is more profound than coastal erosion in East Java Province with average rates of change of +4.12 (end point rate, EPR) and +4.26 m/year (weighted linear rate, WLR) from 2000 to 2019. In addition, some parts of the shorelines in the study area experienced massive changes, especially in the deltas of the Bengawan Solo and Brantas/Porong river with rates of change (EPR) between −87.44 to +89.65 and −18.98 to +111.75 m/year, respectively. In the study areas, coastal erosion happened mostly in the mangrove and aquaculture areas, while the accreted areas were used mostly as aquaculture and mangrove areas. The massive shoreline changes in this area require better monitoring to mitigate the potential risks of coastal erosion and to better manage coastal sedimentation.


2021 ◽  
Author(s):  
Fahimeh Youssefi ◽  
Mohmmad Javad Valadan Zoej ◽  
Ahmad Ali Hanafi-Bojd ◽  
Alireza Borhani Darian ◽  
Mehdi Khaki ◽  
...  

Abstract Background: In many studies in the field of malaria, environmental factors have been acquired in single-time, multi-time or a short time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and faster control of malaria outbreak.Methods: In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with history of malaria prevalence had been estimated. For this purpose, a series of environmental factors affecting the growth and survival of Anopheles had been used over a seven-year period through the GEE. Environmental factors used in this study include NDVI and LST extracted from Landsat-8 satellite images, daily precipitation data from PERSIANN-CDR, soil moisture data from NASA-USDA Enhanced SMAP, ET data from MODIS sensor, and vegetation health indices included TCI and VCI extracted from MODIS sensors. All these parameters were extracted on a monthly average for seven years and, their results were fused at the decision level using majority voting method to estimate high-risk time in a year.Results: The results of this study indicated that there were two high-risk times for all three study areas in a year to increase the abundance of Anopheles mosquitoes. The first peak occurred from late winter to late spring and the second peak from late summer to mid-autumn. If there is a malaria patient in the area, after the end of the Anopheles larvae growth period, the disease will spread throughout the region. Further evaluation of the results against the entomological data available in previous studies showed that the high-risk times predicted in this study were consistent with the increase in the abundance of Anopheles mosquitoes in the study areas. Conclusions: The proposed method is very useful for temporal prediction of the increase of the abundance of Anopheles mosquitoes and also the use of optimal data with the aim of monitoring the exact location of Anopheles habitats. This study extracted high-risk time based on the analysis of the time series of remote sensing data.


Author(s):  
Azad Rasul

Remote sensing data and techniques utilized for various purposes including natural disasters such as earthquake as well as flood. The research aims to consume liberates Landsat 8 images for investigating crashed airplanes such as MH370. Overall approximately 300 Landsat images with less than 10% clouds utilized in addition processed through Google Engine Platform. Due to the materials as well as the color of airplane body different from the area which is a plane crashed there, moreover, it should be the characteristics of the plane shapefile different in terms of albedo, temperature as well as vegetation index value. The research observed Landsat 8 data as well as methods utilized in this research, especially, NDVI, albedo in addition to band 4, capable to distinguish between the plane and its surrounding green area. Therefore, our result confirms during the research period, there was no plane on the location as well as MH370 not crashed in this site.


Author(s):  
Destri Yanti Hutapea ◽  
Octaviani Hutapea

Remote sensing satellite imagery is currently needed to support the needs of information in various fields. Distribution of remote sensing data to users is done through electronic media. Therefore, it is necessary to make security and identity on remote sensing satellite images so that its function is not misused. This paper describes a method of adding confidential information to medium resolution remote sensing satellite images to identify the image using steganography technique. Steganography with the Least Significant Bit (LSB) method is chosen because the insertion of confidential information on the image is performed on the rightmost bits in each byte of data, where the rightmost bit has the smallest value. The experiment was performed on three Landsat 8 images with different area on each composite band 4,3,2 (true color) and 6,5,3 (false color). Visually the data that has been inserted information does not change with the original data. Visually, the image that has been inserted with confidential information (or stego image) is the same as the original image. Both images cannot be distinguished on histogram analysis.  The Mean Squared Error value of stego images of  all three data less than 0.053 compared with the original image.  This means that information security with steganographic techniques using the ideal LSB method is used on remote sensing satellite imagery.


Sign in / Sign up

Export Citation Format

Share Document