scholarly journals Simulation of shell and tube heat exchanger using COMSOL software

2021 ◽  
Vol 947 (1) ◽  
pp. 012008
Author(s):  
Trung Kim Nguyen ◽  
Tuan Nguyen Ba ◽  
Pha Bui Ngoc ◽  
Abdul Mutalib Embong ◽  
Ngoc Nguyen Thi Nhu ◽  
...  

Abstract The aim of this paper is to propose a model to simulate the behaviour of water flows in shell and tube heat exchanger. Particularly, the continuity equation, the general heat transfer equations and the energy equation in COMSOL Multiphysics software were implemented in the numerical modelling. Besides, the experiment was also conducted to validate the proposed COMSOL model. The water temperature at locations close to the inlet and outlet of the shell side was respectively predicted at 31.5°C and 34.6°C in the simulation, and it was respectively measured at 31.5°C and 35°C in the experiment. These findings showed that the simulation results had a good agreement with the experiment. Next, this model was extended to simulate the overall heat coefficient and the pressure drops of the water flows in such heat exchanger. The overall heat coefficient was at 736.62 W/m2K. The pressure drops at the inlet/outlet areas of the shell and tubes were at 849.93 Pa and 6255.50 Pa, respectively. Conclusive evidence showed that the proposed model is a reliable method for studying the heat transfer behaviour of the shell and heat exchanger.

2014 ◽  
Vol 68 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Mica Vukic ◽  
Mladen Tomic ◽  
Predrag Zivkovic ◽  
Gradimir Ilic

In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube) in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, along the shell-and-tube heat exchanger (at positions defined in advance) have been measured. Special attention was made to the investigation of the segmental baffles number influence of the shell-and-tube heat exchanger effectiveness.


1985 ◽  
Vol 107 (2) ◽  
pp. 345-353 ◽  
Author(s):  
E. M. Sparrow ◽  
J. A. Perez

Per-tube heat transfer coefficients and per-compartment and intracompartment pressure drops were measured on the shell side of a shell and tube heat exchanger. The main focus of the work was to determine the response of these quantities to variations in the size of the baffle window; the Reynolds number was also varied parametrically. The pressure measurements showed that the fluid flow is fully developed downstream of the first compartment of the heat exchanger and that the per-compartment pressure drop is constant in the fully developed regime. Within a compartment, the pressure drop in the upstream half is much larger than that in the downstream half. The per-tube heat transfer coefficients vary substantially within a given compartment (on the order of a factor of two), giving rise to a nonuniform thermal loading of the tubes. Row-average and compartment-average heat transfer coefficients were also evaluated. The lowest row-average coefficients were those for the first and last rows in a compartment, while the highest coefficient is that for the row just upstream of the baffle edge. It was demonstrated that the per-tube heat transfer coefficients are streamwise periodic for a module consisting of two consecutive compartments.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2017 ◽  
Vol 6 (4) ◽  
pp. 83 ◽  
Author(s):  
Gaurav Thakur ◽  
Gurpreet Singh

The thermal performance of shell and tube heat exchangers has been enhanced with the use of different techniques. Air bubble injection is one such promising and inexpensive technique that enhances the heat transfer characteristics inside shell and tube heat exchanger by creating turbulence in the flowing fluid. In this paper, experimental study on heat transfer characteristics of shell and tube heat exchanger was done with the injection of air bubbles at the tube inlet and throughout the tube with water based Al2O3 nanofluids i.e. (0.1%v/v and 0.2%v/v). The outcomes obtained for both the concentrations at two distinct injection points were compared with the case when air bubbles were not injected. The outcomes revealed that the heat transfer characteristics enhanced with nanoparticles volumetric concentration and the air bubble injection. The case where air bubbles were injected throughout the tube gave maximum enhancement followed by the cases of injection of air bubbles at the tube inlet and no air bubble injection. Besides this, water based Al2O3 nanofluid with 0.2%v/v of Al2O3 nanoparticles gave more enhancement than Al2O3nanofluid with 0.1%v/v of Al2O3 nanoparticles as the enhancement in the heat transfer characteristics is directly proportional to the volumetric concentration of nanoparticles in the base fluid. The heat transfer rate showed an enhancement of about 25-40% and dimensionless exergy loss showed an enhancement of about 33-43% when air bubbles were injected throughout the tube. Moreover, increment in the heat transfer characteristics was also found due to increase in the temperature of the hot fluid keeping the flow rate of both the heat transfer fluids constant.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


Energy generation to the present growing population is a crucial challenge for the power sector. Heat exchangers (HE) plays an important role in the industrial development. In this present work an attempt is made to develop a Shell-and- Tube Heat Exchanger (STHE) with segmental baffles using commercial CATIA V5 and Autodesk CFD Simulation Softwares. TEMA standards are considered for design of STHE with baffle-cut of 25%. 3-different sets of fluids are allowed to pass through the shell and tube sides i.e. Methanol - Sea Water (M-S), Distilled Water – Raw Water (D-R) and Kerosene- Crude Oil (K-C). The boundary conditions imposed for analysis are fluid inlet temperatures and velocities. ϵ-NTU is employed for the validation of simulation results and found good agreement between them. Results are plotted for temperature, pressure and velocity contours. The performance of the STHE is shown best for the K-C fluid set among other fluid sets.


Sign in / Sign up

Export Citation Format

Share Document