scholarly journals Traditional and current-prospective methods of agricultural plant diseases detection: A review

2022 ◽  
Vol 951 (1) ◽  
pp. 012002
Author(s):  
A Khakimov ◽  
I Salakhutdinov ◽  
A Omolikov ◽  
S Utaganov

Abstract As it is known, a significant part of the yield of agricultural crops is lost due to harmful organisms, including diseases. The article reveals the data on the widespread types of plant diseases (rot, wilting, deformation, the formation of tumors, pustules, etc.) and their symptoms. Early identification of the pathogen type of plant infection is of high significance for disease control. Various methods are used to diagnose pathogens of disease on plant. This article discusses the review of the literature data on traditional methods for diagnosis of plant pathogens, such as visual observation, microscopy, mycological analysis, and biological diagnostics or the use of indicator plants. Rapid and reliable detection of plant disease and identification of its pathogen is the first and most important stage in disease control. Early identification of the cause of the disease allows timely selection of the proper protection method and ensures prevention of crop losses. There are a number of traditional methods for identifying plant diseases, however, in order to ensure the promptness and reliability of diagnostics, as well as to eliminate the shortcomings inherent in traditional diagnostics, in recent years, new means and technologies for identifying pathogens have been developed and introduced into practice. As well as the article provides information on such innovative methods of diagnosis of diseases and identification of their pathogens, which are used widely in the world today, such as immunodiagnostics, molecular-genetic (and phylogenetic) identification, mass spectrometry, etc.

BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 469-477
Author(s):  
Yen-Wen Kuo ◽  
Bryce W Falk

Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 69
Author(s):  
Xiaohui Li ◽  
Hejing Zhao ◽  
Xiaolin Chen

Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Meenakshi Thakur ◽  
Baldev Singh Sohal

Disease control is largely based on the use of fungicides, bactericides, and insecticides—chemical compounds toxic to plant invaders, causative agents, or vectors of plant diseases. However, the hazardous effect of these chemicals or their degradation products on the environment and human health strongly necessitates the search for new, harmless means of disease control. There must be some natural phenomenon of induced resistance to protect plants from disease. Elicitors are compounds, which activate chemical defense in plants. Various biosynthetic pathways are activated in treated plants depending on the compound used. Commonly tested chemical elicitors are salicylic acid, methyl salicylate, benzothiadiazole, benzoic acid, chitosan, and so forth which affect production of phenolic compounds and activation of various defense-related enzymes in plants. Their introduction into agricultural practice could minimize the scope of chemical control, thus contributing to the development of sustainable agriculture. This paper chiefly highlights the uses of elicitors aiming to draw sufficient attention of researchers to the frontier research needed in this context.


2021 ◽  
Author(s):  
Quang D. Tran ◽  
Eric Galiana ◽  
Philippe Thomen ◽  
Céline Cohen ◽  
François Orange ◽  
...  

Phytophthora species cause diseases in a large variety of plants and represent a serious agricultural threat, leading, every year, to multibillion dollar losses. Infection occurs when these biflagellated zoospores move across the soil at their characteristic high speed and reach the roots of a host plant. Despite the relevance of zoospore spreading in the epidemics of plant diseases, it is not known how these zoospores swim and steer with two opposite beating flagella. Here, combining experiments and modeling, we show how these two flagella contribute to generate thrust when beating together, and identify the mastigonemes-attached anterior flagellum as the main source of thrust. Furthermore, we find that steering involves a complex active process, in which the posterior flagellum is stopped, while the anterior flagellum keeps on beating, as the zoospore reorients its body. Our study is a fundamental step towards a better understanding of the spreading of plant pathogens’ motile forms, and shows that the motility pattern of these biflagellated zoospores represents a distinct eukaryotic version of the celebrated “run-and-tumble” motility class exhibited by peritrichous bacteria.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2393
Author(s):  
Xiuping Wang ◽  
Fei Peng ◽  
Caihong Cheng ◽  
Lina Chen ◽  
Xuejuan Shi ◽  
...  

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.


Author(s):  
Aneel Narayanapur ◽  
Pavankumar Naik ◽  
Priya B Kori ◽  
Naseem Kalaburgi ◽  
Rubiya I M ◽  
...  

The detection of plant leaf is an very important factor to prevent serious outbreak. Automatic detection of plant disease is essential research topic. Most plant diseases are caused by fungi, bacteria, and viruses. Fungi are identified primarily from their morphology, with emphasis placed on their reproductive structures. Bacteria are considered more primitive than fungi and generally have simpler life cycles. With few exceptions, bacteria exist as single cells and increase in numbers by dividing into two cells during a process called binary fission Viruses are extremely tiny particles consisting of protein and genetic material with no associated protein. The term disease is usually used only for the destruction of live plants. The developed processing scheme consists of four main steps, first a color transformation structure for the input RGB image is created, this RGB is converted to HSI because RGB is for color generation and his for color descriptor. Then green pixels are masked and removed using specific threshold value, then the image is segmented and the useful segments are extracted, finally the texture statistics is computed. from SGDM matrices. Finally the presence of diseases on the plant leaf is evaluated.


Sign in / Sign up

Export Citation Format

Share Document