scholarly journals Effect of the edible coating containing cinnamon oil nanoemulsion on storage life and quality of tomato (Lycopersicum esculentum Mill) fruits

2022 ◽  
Vol 951 (1) ◽  
pp. 012048
Author(s):  
Y Aisyah ◽  
E Murlida ◽  
T A Maulizar

Abstract Tomato is one of the fruit vegetables that had perishable properties so that it needs good postharvest handling to increase their shelf life. One of among other technologies, surface coating of tomatoes with edible ingredients added with natural antimicrobials is potential to be applied. Currently, nanotechnology represents an important area and an efficient option for extending the shelf life of foods. The research aimed to investigate the effect of edible coating, containing cinnamon oil nanoemulsion, to extend the storage life and quality of tomato fruits. Treatments given were (a) dipping time in the edible coating formula (1 and 3 minutes), and the storage period of tomatoes, namely 3, 6, 9, 12 and 15 days at room temperature (27°C). As a control treatment, the inspection was also applied on non-coated tomatoes. The results showed that coating treatment was significantly able to delay changes in the quality attributes of tomatoes and longer shelf life compared to fruit that was not coated with an edible coating. Tomato edible coating has better in maintaining physicochemical characteristics (weight loss of 1.83%, TSS 0.34 Brix, vitamin C 59.8 mg/100g and total plate count of 7.88 × 106 CFU/g) than control throughout the storage period. The study concludes that cinnamon oil nanoemulsion coating could be a good alternative to preserve the quality and extend the storage life of tomatoes.

2017 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Rachel Breemer ◽  
Priscillia Picauly ◽  
Nurhayati Hasan

This research was aimed to determine the exact glycerol concentration in the making of edible coating to coat the tomatoes so that the shelf life is extended and the quality is maintained. A Completely Randomized Design with one factor (RAL): glycerol concentration (without coating, 10%, 30%, 50%) was applied. The observed variables were weight shrinkage, color, hardness, total acid and vitamin C. Results showed that for 10 days storage period, the best response of the variables observed was obtained by tomatoes treated with edible coating 10% glycerol concentration that can maintain the quality of tomato and economically feasible than glycerol concentration of 30% and 50%.


Author(s):  
Anshul Kumar Khare ◽  
Robinson J.J. Abraham ◽  
V. Appa Rao ◽  
R. Narendra Babu ◽  
Wilfred Ruban

In present study, chicken fillets were coated with chitosan and cinnamon oil by three methods viz., spraying, brushing and dipping and shelf-life of coated meat were studied. Efficiency of coating material and three methods of application were determined through shelf-life studies of coated meat under refrigeration conditions (4±1°C). Based on the results of physico-chemical, sensory and microbial characteristics, spraying method had lower Tyrosine Value, Thiobarbituric Acid number, Standard Plate count, drip loss and higher sensory scores compared to other methods of application. Extract Release Volume and Water Holding Capacity decreased significantly (P less than 0.05) with storage period in all the samples. However spraying had comparatively lower values/or higher water holding capacity. Hunter color values did not differ significantly with storage and between treatments though brushing and dipping samples had comparatively higher yellowness and lightness but lower redness value. Spraying of chicken breast extended the shelf life of chicken breast upto 7 days compared to 3 to 5 days for control and treatments.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Virgilio Cruz ◽  
Romeo Rojas ◽  
Saúl Saucedo-Pompa ◽  
Dolores G. Martínez ◽  
Antonio F. Aguilera-Carbó ◽  
...  

An edible coating functionalized with pomegranate polyphenols was designed. Different blends of candelilla wax, gum arabic, jojoba oil, and pomegranate polyphenols were formulated in order to improve the shelf life quality of pears (variety Bartlett), and all formulations were applied by immersion onto the fruit surface. Coated pears with and without polyphenols and uncoated pears (control) were stored under the same conditions. Fruits were analyzed to evaluate changes in their physicochemical, microbiological, and sensorial properties during 30 days of storage at room temperature. Coated pears coded as T13 (candelilla wax 3%, gum arabic 4%, jojoba oil 0.15%, and pomegranate polyphenols 0.015%) extended and improved their shelf life quality due to the minimization of the physic-chemical changes and sensorial properties. Therefore, the results indicated that the formulated edible coating has potential to extend the shelf life and maintain quality of pears. It was probed that coated pears were accepted for consumers as a good product. Edible coating application represents a good alternative to keep pears freshness for longer periods.


2008 ◽  
Vol 71 (6) ◽  
pp. 1150-1161 ◽  
Author(s):  
ROSA M. RAYBAUDI-MASSILIA ◽  
MARÍA A. ROJAS-GRAÜ ◽  
JONATHAN MOSQUEDA-MELGAR ◽  
OLGA MARTÍN-BELLOSO

Cinnamon, clove, and lemongrass essential oils (EOs) and their active compounds cinnamaldehyde, eugenol, and citral, respectively, were investigated for their effectiveness as antimicrobial agents in an alginate-based edible coating (EC) on fresh-cut Fuji apples. This EC also contained malic acid, N-acetyl-l-cysteine, glutathione, and calcium lactate as quality stabilizing compounds. The EC applied on apple pieces effectively maintained the physicochemical characteristics of the apple pieces for more than 30 days, decreased the respiration rate, reduced the Escherichia coli O157:H7 population by about 1.23 log CFU/g at day 0, and extended the microbiological shelf life by at least 19 days. The addition of EOs at 0.7% (vol/vol) or their active compounds at 0.5% (vol/vol) into the EC increased its antimicrobial effect, reduced the E. coli O157:H7 population by more than 4 log CFU/g, and extended the microbiological shelf life by more than 30 days. However, those concentrations of EOs affected the physicochemical characteristics of fresh-cut apples and thus limited their shelf life from 7 to 21 days. Lemongrass and cinnamon EOs (0.7%), citral (0.5%), and cinnamaldehyde (0.5%) were the most effective compounds for extending microbiological shelf life, whereas lemongrass, cinnamon, and clove EOs at 0.3% (vol/vol) best maintained the physicochemical characteristics of the product. Apple pieces with EC at day 0 and with EC with or without lemongrass EO at 0.7% at day 15 were preferred by the panelists. ECs containing natural antimicrobials and quality stabilizing compounds may be useful for extending the shelf life of fresh-cut fruits.


2020 ◽  
Vol 8 (2) ◽  
pp. 134-142
Author(s):  
Salma Shafrina Aulia ◽  
Budi Setiawan ◽  
Tiurma Sinaga ◽  
Ahmad Sulaeman

Background: Instant pumpkin cream soup enriched with tempeh had fulfilled 10% Recommended Dietary Allowances (RDA) for elderly so that it can be used as an easy-to-serve snack, but decreasing quality of instant cream soup will be happened if the instant cream soup was stored for a long time. Objectives: This study aimed to analyze quality of water content, water activity and lipid oxidation in instant pumpkin cream soup during storage and estimated the shelf life of pumpkin cream soup enriched with tempeh.Method:  Quality storage was analyzed using of water content, water activity (aw) and lipid oxidation. Estimation of shelf life was analyzed using Arrhenius Accelerated Shelf Life Testing (ASLT) model.Results: The results showed that the water content, aw levels and lipid oxidation of instant pumpkin cream soup increased during the storage period. The critical parameter used in this study was lipid oxidation. Instant cream soup without the addition of tempeh can last 447 days  while the cream soup with the addition of tempeh has a shelf life of 433 days.Conclusion: Quality of instant pumpkin cream soup decreased during the storage period and it would be expired over a year.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 844
Author(s):  
Jun-Jie Xing ◽  
Dong-Hui Jiang ◽  
Zhen Yang ◽  
Xiao-Na Guo ◽  
Ke-Xue Zhu

Humidity-controlled dehydration (HCD) was innovatively applied in this paper to control the growth of microorganisms in fresh wet noodles (FWN). Effects of HCD treatment with different temperatures (40, 60 or 80 °C), relative humidity (RH, 50%, 70% or 90%) and treatment time (5–32 min) on the total plate count (TPC), the shelf-life, and qualities of FWN were investigated. The results showed that HCD reduced the initial microbial load on the fresh noodles and extended the shelf-life up to 14–15 days under refrigeration temperature (10 °C). A 1.39 log10 CFU/g reduction for the initial TPC was achieved after HCD treatment at the temperature of 60 °C and RH of 90%. HCD with higher RH had a more positive influence on quality improvement. The L* values, the apparent stickiness, and the cooking properties of the noodle body were improved by HCD while good sensory and texture quality of noodles were still maintained after the dehydration process.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 764
Author(s):  
Nishant Kumar ◽  
Pratibha ◽  
Neeraj ◽  
Anka Trajkovska Petkoska ◽  
Sawsan Ali AL-Hilifi ◽  
...  

The polysaccharide based composite biomaterial (coating) used in preserving fruits and vegetables during storage is attracting increased attention as it is biodegradable material that prolongs shelf life. In the present investigation, chitosan–pullulan (50:50) composite edible coating was prepared with pomegranate peel extract (0.02 g/mL) as an active antioxidant agent. The effect of treatment with pomegranate peel extract enriched chitosan–pullulan composite edible coating on the shelf life of mango fruits during 18 days of storage period at room (23 °C) and cold (4 °C) temperature was evaluated. Results of the present study demonstrated that the application of chitosan–pullulan composite edible coating significantly (p ≤  0.05) influences the storage life of mango fruits at both storage temperatures. The chitosan–pullulan composite edible coating reduced the physiological loss in weight (PLW), and maintained total soluble solids (TSS), acidity and pH of coated mango fruits as compared to the control. In addition, fruit sensory quality such as freshness, color, taste and texture were also retained by the treatment. Furthermore, sustained firmness, phenolic content and antioxidant activity confirmed the effectiveness of the pomegranate peel extract enriched chitosan–pullulan composite edible coating on mango fruits. The phenolic, flavonoid and antioxidant activity of coated fruits were retained by pomegranate peel rich edible coating. Therefore, the chitosan–pullulan (50:50) combination with pomegranate peel extract can be used as an alternative preservation method to prolong the shelf life of mango fruits at room and cold storage conditions. However, more in-depth studies are required at farm and transit level without affecting the postharvest quality of mango fruits, providing more revenue for farmers and minimizing postharvest losses.


Sign in / Sign up

Export Citation Format

Share Document