scholarly journals Fig trees (Ficus spp.) and their pollinating wasps in Universitas Syiah Kuala Campus, Banda Aceh, Indonesia

2022 ◽  
Vol 951 (1) ◽  
pp. 012062
Author(s):  
J Jauharlina ◽  
A Anhar ◽  
M Minarti

Abstract Fig trees (Ficus spp.) and their pollinating wasps (Hymenoptera; Agaonindae) are a unique system to study mutualism. Female fig wasps deposit eggs and develop their progeny in galled female flowers inside the figs, while fig wasps pollinate females flower inside the same figs. A study investigating fig tree species composition and pollinating wasps was conducted at Universitas Syiah Kuala campus, Banda Aceh. We recorded all fig tree species found in the area from Dec 2020 until June 2021. Ten semi-ripe fig fruits on each fig tree were sampled and brought to the laboratory to examine the wasps inside. We recorded 112 individuals fig trees that belonged to 11 species; most of them were monoecious species. The most abundant species was Ficus altissima, followed by F. Benjamina, and F. macrocarpa, while the least was F.racemosa and F. carica. A number of 20.7± 6.5 (Mean ± SE) female pollinator Eupristina koningsbergeri was counted in a single fig of F. benjamina compared to 350.4±45.4 (Mean ± SE) Ceratosolen fusciceps female wasps in fig of F.racemosa. This study has provided an example of obligate mutualism between different species in the local area, which has been observed since a long time ago.

2019 ◽  
Author(s):  
J. Jauharlina ◽  
Hartati Oktarina ◽  
Rina Sriwati ◽  
Natsumi Kanzaki ◽  
Rupert J. Quinnell ◽  
...  

AbstractMany species of fig trees (Ficus spp., Moraceae) have nematodes that develop inside their inflorescences (figs). Nematodes are carried into young figs by females of the trees’ host-specific pollinating fig wasps (Agaonidae) that enter the figs to lay their eggs. The majority of Asian fig trees are functionally dioecious. Pollinators that enter figs on female trees cannot reproduce and offspring of any nematodes they carry will also be trapped inside. The biology of the nematodes is diverse, but poorly understood. We contrasted the development of nematodes carried by the pollinating fig wasp Ceratosolen solmsi marchali into figs on male and female trees of Ficus hispida in Sumatra, Indonesia. Figs were sampled from both male and female trees over a six-month period, with the nematodes extracted to record their development of their populations inside the figs. Populations of three species of nematodes developed routinely inside figs of both sexes: Caenorhabditis sp. (Rhabditidae), Ficophagus cf. centerae and Martininema baculum (both Aphelenchoididae). This is the first record of a Caenorhabditis sp. associated with F. hispida. Mean numbers of nematodes reached around 120-140 in both male and female figs. These peak population sizes coincided with the emergence of the new generation of adult fig wasps in male fig trees. We conclude that figs on female trees can support development and reproduction of some nematode species, but the absence of vectors means that their populations cannot persist beyond the lifetime of a single fig. Just like their fig wasp vectors, the nematodes cannot avoid this routine source of mortality.


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


1994 ◽  
Vol 59 ◽  
Author(s):  
D. Maddelein ◽  
B. Muys ◽  
J. Neirynck ◽  
G. Sioen

The  forest of Halle (560 ha), situated 20 km south of Brussels is covered by a  beech (Fagus sylvatica)  forest, locally mixed with secundary species (Tilia,  Fraxinus, Acer, Quercus,... ). In almost all  stands, herbal vegetation is dominated by bluebell (Hyacinthoides  non-scripta).     The research intended to classify 36 plots of different tree species  composition according to their site quality. Three classification methods  were compared: the first one based on the indicator value of the understorey  vegetation, a second one on the humus morphology and a last one on some  quantitative soil characteristics. According to the plant sociological site  classification, the plots have the same site quality. However, humus forms  differ apparently and significant differences were found in pH value and base  cation saturation of the soil, abundance and biomass of earthworms and  biomass of the ectorganic horizon. Tree species proved to be the main cause  of these differences.     The results illustrate that the herbal vegetation is not always a reliable  indicator of site quality. In the case of a homogeneous vegetation dominated  by one or more indifferent species, classification on humus morphology or  soil analysis are more appropriate. In the forest of Halle, the tree species  is probably the main cause of the observed differences in site quality.


Author(s):  
Maame Esi Hammond ◽  
Radek Pokorný ◽  
Daniel Okae-Anti ◽  
Augustine Gyedu ◽  
Irene Otwuwa Obeng

AbstractThe positive ecological interaction between gap formation and natural regeneration has been examined but little research has been carried out on the effects of gaps on natural regeneration in forests under different intensities of disturbance. This study evaluates the composition, diversity, regeneration density and abundance of natural regeneration of tree species in gaps in undisturbed, intermittently disturbed, and disturbed forest sites. Bia Tano Forest Reserve in Ghana was the study area and three gaps each were selected in the three forest site categories. Ten circular subsampling areas of 1 m2 were delineated at 2 m spacing along north, south, east, and west transects within individual gaps. Data on natural regeneration < 350 cm height were gathered. The results show that the intensity of disturbance was disproportional to gap size. Species diversity differed significantly between undisturbed and disturbed sites and, also between intermittently disturbed and disturbed sites for Simpson’s (1-D), Equitability (J), and Berger–Parker (B–P) indices. However, there was no significant difference among forest sites for Shannon diversity (H) and Margalef richness (MI) indices. Tree species composition on the sites differed. Regeneration density on the disturbed site was significantly higher than on the two other sites. Greater abundance and density of shade-dependent species on all sites identified them as opportunistic replacements of gap-dependent pioneers. Pioneer species giving way to shade tolerant species is a natural process, thus make them worst variant in gap regeneration.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


1995 ◽  
Vol 12 (3) ◽  
pp. 115-120 ◽  
Author(s):  
David B. Kittredge ◽  
P. Mark S. Ashton

Abstract Browsing preferences by white-tailed deer were evaluated for 6 tree species in northeastern Connecticut. Deer density averaged 23/mile². Deer exhibited no species-specific preferences for seedlings greater than 19 in. For seedlings less than 19 in., hemlock and black birch were preferred. Red maple, sugar maple, and white pine seedlings were avoided. Red oak seedlings were neither preferred nor avoided. A much higher proportion of seedlings greater than 19.7 in. in height was browsed, regardless of species. Browsing preferences for species in the smaller seedling class, combined with a lack of preference for species in the larger class may result in future stands with less diverse tree species composition. Deer densities in excess of 23/mile² may be incompatible with regeneration of diverse forests in southern New England. North. J. Appl. For. 12(3):115-120.


2006 ◽  
Vol 36 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Julia Koricheva ◽  
Harri Vehviläinen ◽  
Janne Riihimäki ◽  
Kai Ruohomäki ◽  
Pekka Kaitaniemi ◽  
...  

Pure forest stands are widely believed to be more prone to pest outbreaks and disease epidemics than mixed stands, leading to recommendations of using stand diversification as a means of controlling forest pests and pathogens. We review the existing evidence concerning the effects of stand tree-species diversity on pests and pathogens in forests of the boreal zone. Experimental data from published studies provide no overall support for the hypothesis that diversification of tree stands can prevent pest outbreaks and disease epidemics. Although beneficial effects of tree-species diversity on stand vulnerability are observed in some cases, in terms of reductions in damage, these effects are not consistent over time and space and seem to depend more on tree-species composition than on tree-species diversity per se. In addition, while mixed stands may reduce the densities of some specialized herbivores, they may be more attractive to generalist herbivores. Given that generalist mammalian herbivores cause considerable tree mortality during the early stages of stand establishment in boreal forests, the net effect of stand diversification on stand damage is unlikely to be positive.


2017 ◽  
Vol 47 (8) ◽  
pp. 997-1009 ◽  
Author(s):  
Katherine F. Crowley ◽  
Gary M. Lovett

As tree species composition in forests of the northeastern United States changes due to invasive forest pests, climate change, or other stressors, the extent to which forests will retain or release N from atmospheric deposition remains uncertain. We used a species-specific, dynamic forest ecosystem model (Spe-CN) to investigate how nitrate (NO3–) leaching may vary among stands dominated by different species, receiving varied atmospheric N inputs, or undergoing species change due to an invasive forest pest (emerald ash borer; EAB). In model simulations, NO3– leaching varied widely among stands dominated by 12 northeastern North American tree species. Nitrate leaching increased with N deposition or forest age, generally with greater magnitude for deciduous (except red oak) than coniferous species. Species with lowest baseline leaching rates (e.g., red spruce, eastern hemlock, red oak) showed threshold responses to N deposition. EAB effects on leaching depended on the species replacing white ash: after 100 years, predicted leaching increased 73% if sugar maple replaced ash but decreased 55% if red oak replaced ash. This analysis suggests that the effects of tree species change on NO3– leaching over time may be large and variable and should be incorporated into predictions of effects of N deposition on leaching from forested landscapes.


2006 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Yong Kwon Lee ◽  
Don Koo Lee ◽  
Su‐Young Woo ◽  
Emmanuel Rodantes G. Abraham ◽  
Wilfredo M. Carandang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document