scholarly journals The identification of optimal operating parameters under high energy efficiency conditions for a single polymer electrolyte membrane (PEM) fuel cell

2022 ◽  
Vol 960 (1) ◽  
pp. 012002
Author(s):  
I G Bratu ◽  
R F Ene ◽  
M Vulpe ◽  
F Uleanu ◽  
D Giosanu

Abstract The performance of PEM fuel cells is influenced by several factors such as: the operating temperature of the cell, the reactant gas flow, work pressures, the reaction gas humidity. In the present work we aimed to identify the optimal values of these parameters for operation of a PEM cell to achieve maximum power in conditions of high efficiency; the technological possibilities of its use in a portable energy application have been evaluated. Experimental measurements regarding the integrating polymeric membrane in three different fuel cell construction designed were performed. The influence of the mechanical compression of the GDL diffusion layer on the total internal resistance of the cell was achieved by comparative analysis of the polarization curves. It was found that as the deformation level of the MEA increases, the power generated by the battery increases progressively. The resulting experimental data subsequently allowed the design and implementation of a PEM fuel cell assembly, fully functional at power level, corresponding to the number of constituent elements.

Author(s):  
Cody D. Rath ◽  
Satish G. Kandlikar

Water management issues continue to be a major concern for the performance of polymer electrolyte membrane (PEM) fuel cells. Maintaining the optimal amount of hydration can ensure that the cell is operating properly and with high efficiency. There are several components that can affect water management, however one area that has received increased attention is the interface between the gas diffusion layer (GDL) and the gas reactant channels where excess water has a tendency to build up and block reactant gasses. One key parameter that can affect this build up is the geometry of the microchannels. The work presented here proposes an optimal trapezoidal geometry which will aid in the removal of excess water in the gas channels. The Concus-Finn condition is applied to the channel surfaces and GDL to ensure the water will be drawn away from GDL surface and wicked to the top corner of the channel. An ex situ setup is designed to establish the validity of the Concus-Finn application. Once validated, this condition is then used to design optimal channel geometries for water removal in a PEM fuel cell gas channel.


Author(s):  
Jingtian Wu ◽  
Huiyuan Liu ◽  
Yujiang Song ◽  
Yun Wang

Cost is a major barrier to commercialization of polymer electrolyte membrane (PEM) fuel cells. Catalyst layers (CLs) contribute to a major portion of PEM fuel cell cost due to the...


Author(s):  
Casey J. Hoffman ◽  
Daniel F. Walczyk

Two of the largest barriers to PEMFC commercialization are the materials costs for individual components, especially platinum catalyst, and the fact that few large-scale manufacturing capabilities currently exist. This paper focuses on the development of a testbed which will be used for evaluating coating technologies for use in the manufacture of polymer electrolyte membrane (PEM) fuel cell electrodes. More specifically, the focus is on diffusion electrode architecture, in which the catalyst layer is applied to a gas diffusion layer (GDL) rather than on the membrane. These electrodes are used for both low- and high-temperature PEM fuel cells. A flexible web coating testbed has been designed and built to allow for testing of different gas diffusion electrode (GDE) and GDL deposition methods. This testbed, which is approximately two meters in length, includes a variety of both coating and drying capabilities as well as additional space for quality measurement and control system testing. Testbed capabilities and planned experimentation is discussed in detail. In the future, various non-contact deposition methods for the microlayer and catalyst inks will be investigated (e.g., direct spray, ultrasonic spray) to determine those that will provide higher throughput and repeatability through increased process control capability, while improving electrode performance.


2013 ◽  
Vol 724-725 ◽  
pp. 723-728
Author(s):  
Xue Nan Zhao ◽  
Hong Sun ◽  
Zhi Jie Li

High temperature proton exchange membrane (HT-PEM) fuel cell is considered as one of the most probable fuel cells to be large-scale applied due to characteristics of high efficiency, friendly to environment, low fuel requirement, ease water and heat management, and so on. However, carbon monoxide (CO) content in fuel plays an important role in the performance of HT-PEM fuel cells. Volt-ampere characteristics and AC impedance of HT-PEM fuel cell are tested experimentally in this paper, and effects of CO in fuel on its performance are analyzed. The experimental results show that CO in fuel increases remarkably the Faraday resistance of HT-PEM fuel cell and decreases the electrochemical reaction at anode; the more CO content in fuel is, the less HT-PEM fuel cell performance is; with the increasing cell temperature, the electrochemical reaction on the surface of catalyst at anode is improved and the poisonous effects on the HT-PEM fuel cell are alleviated.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Venkata Suresh Patnaikuni ◽  
Sreenivas Jayanti

AbstractThe gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. Generally it is a carbon-based fibrous medium that allows for the transport of electrons through the fibers and distributes the reactants through the void space to the catalyst layer in a PEM fuel cell. In the present work, a microstructure study of reactant transport is carried out by reconstructing the typical fibrous microstructure of the GDL and investigating the transport characteristics of the porous medium using computational fluid dynamics (CFD) simulations. The results confirm the applicability of Darcy’s law formulation for permeability determination and Bruggemann correction for calculation of effective diffusivity for typical conditions encountered in PEM fuel cells. Macroscopic material properties such as through-plane and in-plane permeabilities and effective diffusion coefficient are determined and compared against experimental values reported in the literature.


Author(s):  
Pinkhas Rapaport ◽  
Yeh-Hung Lai ◽  
Chunxin Ji

This paper reports on the study of gas diffusion media (GDM) intrusion into reactant gas channels and its effect on the performance of the proton exchange membrane (PEM) fuel cell. The PEM fuel cell under consideration consists of a membrane electrode assembly (MEA) sandwiched between two layers of gas diffusion media commonly made of carbon paper or cloth. The GDM/MEA/GDM assembly is then compressed between two adjacent bi-polar plates. In this configuration, the compression pressure is transmitted under the lands of the reactant gas flow-field onto GDMs on which the portion over the channels remain unsupported. Because of the relatively low bending and compressive stiffness, it is found that GDMs can easily intrude into the reactant gas channels. The direct consequence of GDM intrusion is the pressure drop increase in the reactant gases in the intruded channels. This is further compounded by cell-to-cell or channel-to-channel variation in GDM thickness and mechanical properties, which results in non-uniform reactant gas flow distribution and ultimately negatively impacts the fuel cell performance. In this study, we have developed a GDM intrusion model based on the finite element method (FEM. We have also devised an experimental setup to measure the GDM intrusion, in which we found good agreement between the model prediction and experimental measurement. Combining the FEM based intrusion model and a flow redistribution model we have investigated the effect of GDM channel intrusion on the reactant flow distribution and the impact on the fuel cell performance. It is found that a 20% reduction of reactant flow can be induced with a 5% additional blockage in channels by GDM intrusion. Based on the findings from the current study, we attribute the significant performance variation in a 30-cell fuel cell stack to the variation in reactant flow induced by the variation in GDM intrusion. The results from the analytical study and fuel cell testing both suggested that the product variations in GDM would need to be significantly reduced and the stiffness of the GDM would need to be increased if the PEM fuel cells of high power density were to be used reliably at a relatively low stoichiometry.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1773 ◽  
Author(s):  
Alessandro Ferraris ◽  
Alessandro Messana ◽  
Andrea Giancarlo Airale ◽  
Lorenzo Sisca ◽  
Henrique de Carvalho Pinheiro ◽  
...  

Humidity and temperature have an essential influence on PEM fuel cell system performance. The water content within the polymeric membrane is important for enhancing proton conduction and achieving high efficiency of the system. The combination of non-stationary operation requests and the variability of environment conditions poses an important challenge to maintaining optimal membrane hydration. This paper presents a humidification and thermal control system, to prevent the membrane from drying. The main characteristics of such a device are small size and weight, compactness and robustness, easy implementation on commercial fuel cell, and low power consumption. In particular, the NTHS method was studied in a theoretical approach, tested and optimized in a laboratory and finally applied to a PEMFC of 1 kW that supplied energy for the prototype vehicle IDRA at the Shell Eco-Marathon competition. Using a specific electronic board, which controls several variables and decides the optimal reaction air flow rate, the NTHS was managed. Furthermore, the effects of membrane drying and electrode flooding were presented.


Author(s):  
Kui Jiao ◽  
Biao Zhou

Liquid water transport inside PEM fuel cells is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air-water flow patterns inside fuel cell gas flow channels with porous transport layer (PTL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents a numerical investigation of air-water flow across a PTL with a serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Detailed flow patterns with air-water across the porous media were investigated and discussed.


Author(s):  
Hong Liu ◽  
Peiwen Li

The dimensions of gas flow channels and walls/ribs of PEM fuel cells are optimized using a convenient mathematical model. Experimental work for several PEM fuel cells with modeling-optimized gas flow channels was conducted, and the tested results validate the modeling work and the optimization. The model considered average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization, the humidity in anode and cathode gas channels, and thus the proton conductivity of membranes, as well as the activation polarization. An electrical circuit for the current and ion conduction is applied to analyze the ohmic losses from anode current collector to cathode current collector. The modeling computation required relatively less computational time and thus can be applied to compute a large number of cases with various flow channel designs and operating parameters for optimization analysis. Optimum ratio of the width of flow channels against the walls/ribs was found from the modeling analysis. In the experimental work, PEM fuel cells were fabricated based on the flow channel dimensions optimized from the modeling analysis. Experimental results agreed with the modeling analysis satisfactorily in respect to the comparison of V-I performance between fuel cells with several optimized designs. The model is recommended as a tool for optimization design of gas flow channels for PEM fuel cells. The optimization results are of significance to the improvement of PEM fuel cell designs and performance.


Author(s):  
Sahuar Sahu

Interest in PEM fuel cells has grown rapidly in recent years because of its possible applications. The performance of PEM fuel cells is strongly affected by various physical factors, such as the flow of reactant gas, thermal management and water management. The performance and characteristics of a PEM fuel cell have been analysed through the development of a 3D model and numerical simulation. The result obtained from the computational model shows details of species movement, charge Transport and mass transfer phenomena. This paper also investigates the influence of input parameters on the output of the PEM fuel cell model. The result from the analytical study is compared with experimental results to check the accuracy of the model.


Sign in / Sign up

Export Citation Format

Share Document