scholarly journals Evaluation of Reclaimed Asphalt Mixtures Modified by Nanoclay Powder on Moisture Damage

2022 ◽  
Vol 961 (1) ◽  
pp. 012047
Author(s):  
Mays A Jaafar ◽  
Hasan H Joni ◽  
Hussein H Karim

Abstract Recycling asphalt is a significant stage in pavement industry, yet it can be unfavorable to the durability of the recycled mix due to the loss of binder charachteristics, thus the mixture will be weaker to the external factors like moisture. This study aims to evaluate the influence of nanoclay montmorillonite k10 powder (MMT) on Marshall’s characteristics and moisture resistance in Reclaimed Asphalt Pavement (RAP) mixtures. Three percentages of rejuvenated RAP were used, 30%, 40%, and 50% of the total mixture, these percentages were modified with 0%, 1%, 3%, and 5% nanoclay (MMT) of the neat binder’s weight. Asphalt Cement AC(85-100) was used to rejuvenate the RAP. The Marshall test was conducted on modified RAP to detect the effect on the Marshall stability and flow and air void, indirect tensile strength tests (ITS) were also conducted before and after nanoclay powder addition to compare and assess the resistance of moisture to rejuvenated RAP mixtures. The results of the laboratory tests have shown that the use of 5% nanoclay in the regenerated RAP mixes offers superior performance than without it, where it enhanced stability by 15%, reduced flow by 14.3%, and increased moisture damage resistance by 3.66% all for 50% RAP mixtures.

2019 ◽  
Vol 5 (12) ◽  
pp. 2535-2553 ◽  
Author(s):  
Saif Al-din Majid Ismael ◽  
Mohammed Qadir Ismael

Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marshall stability and the addition of 6% of MMT recorded the highest increase, where it increased by 26.35% and 22.26% foe asphalt cement(40-5) and(60-70) respectively. Also, the addition of MMT led to increase moisture resistance of asphalt mixture according to the increase in TSR and IRS. The addition of 4% and 6% of MMT recorded the highest increase in TSR and IRS for asphalt cement (40-50) and (60-70) respectively, where they increased by 11.8% and 17.5% respectively for asphalt cement (40-50) and by 10% and 18% respectively for asphalt cement (60-70).


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4244 ◽  
Author(s):  
Przemysław Buczyński ◽  
Marek Iwański

The paper investigates the influence of redispersible polymer powder (RPP) on the physical and mechanical properties of a cold-recycled mixture with foamed bitumen (CRM-FB). Four types of RPP with a varied chemical base were used: VA-VeoVA, VA-VeoVa-Ac, EVA and VA/VV/E/Ac. The polymer powder-modified cold recycled mixture with foamed bitumen, (P)CRM-FB, was composed of 45.8% reclaimed asphalt pavement (RAP), 45.8% natural aggregate (VA), 3.0% Portland cement CEM I 42,5R, 3.0% foamed bitumen 50/70 and 3.0% RPP, all dosed by weight. The reference mixture, (R)CRM-FB, served as a reference point for comparison. It was found that RPP improved the workability of the CRM-FB mixture. This results in a reduced number of compaction cycles and lower energy needed to obtain the air void content as in the reference mixture. In addition, the RPP modifier markedly increased the CRM-FB mixture cohesion (ITSDRY) and strength, by approximately 40–70%, depending on the RPP used. These findings are particularly important for CRM-FB mixtures designed for road bases. The present investigations confirmed the improvement of the CRM-FB mixture parameters after the modification with RPP, regardless of the powder type used.


2020 ◽  
Vol 46 (3) ◽  
pp. 394-408
Author(s):  
Kumari Monu ◽  
G.D. Ransinchung R.N. ◽  
Surender Singh ◽  
Gaurav Singh Raghav

Reclaimed Asphalt pavement (RAP) is a C&D waste originating from the reclamation of asphalt pavement which has completed its service life. Using RAP would potentially reduce reliance on primary aggregates and lowers the environmental impact of construction. The present study is an attempt made to utilize RAP judiciously as a bound base course of the flexible pavement. Natural coarse aggregates were replaced by RAP in proportions of 50% & 100% with & without Warm Mix Asphalt (WMA), for production of bound-base course mixes. To ensure the long run performance, the aging condition was simulated in the laboratory and mechanical properties such as Marshall Stability, Tensile Strengths, Marshall Stability Retained, Indirect Tensile Ratio, rutting resistance, Fatigue life, and abrasion resistance were considered. With the incorporation of 50-100% coarse RAP, the Marshall Stability, rutting resistance and abrasion were found to be improved by 30-32%, 43-104% and 11-17% respectively. Similarly, total cost saving is about 15-35%, which is quite significant. However, the addition of WMA enhanced the cost by 3-4%, which is insignificant when combined with RAP, furthermore, the reductions in fume emission enhance the sustainability aspect of the technology.


2012 ◽  
Vol 509 ◽  
pp. 123-127
Author(s):  
Shao Peng Wu ◽  
Pei Qiang Cui ◽  
Deng Feng Zhang

The property of aggregate has a significant effect on the performance of asphalt mixture because of its high proportion. Asphalt mixture prepared by some kind of aggregate cause the inadequate compaction problem, which results in moisture damage due to its large air void. Limestone manufactured sand is considered as one of the useful solution to overcome the compaction problem. In this paper, fine aggregate is substituted by different proportion of limestone manufactured sand (LMS). The effect of replacement ratio on volume properties and pavement performance is studied. The results show that the limestone manufactured sand can improve the pavement performance and is benefit to the compaction of andesite asphalt mixture. Furthermore, this research also provided some valuable parameters for guiding the pavement construction in the future.


2021 ◽  
Vol 7 (10) ◽  
pp. 1741-1752
Author(s):  
Yasir N. Kadhim ◽  
Wail Asim Mohammad Hussain ◽  
Abdulrasool Thamer Abdulrasool

For the sake of enhancing the mechanical properties and durability of asphalt concrete, many studies suggest adding different admixtures, such as waste materials in the form of filler. These admixtures have a significant influence on the performance of asphalt concrete by plying a roll in filling the voids between particles and sometimes as a cementitious material. This study aims to improve the strength of asphalt concrete by adding crushed animal bone to the mix after carbonization at a temperature of 800 Co. Seven different percentages (10, 20, 30, 40, 50, 60, and 100%) of animal bone ash as a replacement for the filler percentage were added to the optimum asphalt concrete mix. A number of tests were conducted on asphalt concrete specimens to measure Marshall stability (MS), Marshall flow value (MF), voids filled with asphalt percentages (VFA), air void percentages (VA), voids in mineral aggregate percentages (VMA), and maximum theoretical specific gravity (GMM). From the results, the maximum stability of 14.85 KN was reached when using animal bone ash of 20% as a partial replacement for the conventionally used filler (limestone). In general, there are some improvements in the physical properties of asphalt concrete with animal bone ash, which can be related to the increase in the bond between the particles of aggregates and the bitumen material. Doi: 10.28991/cej-2021-03091757 Full Text: PDF


During the maintenance or the construction of asphalt pavement the utilization of reclaimed asphalt pavement (RAP) can diminish the cost of the project, time consumption, conservation of natural resources and most importantly no harm to the environment. In this paper we are going to study the performance of pavement containing RAP (20%, 30%, 40% and 50% excluding the RAP aggregates of size 20 mm), anti-stripping agent Zycotherm, 1% of virgin bitumen contain are replaced by bitumen attached on RAP aggregates after the screening process. Tests performed for conventional and modified pavement sample are Marshall Stability and flow. Test for virgin aggregates and RAP aggregates are impact test, crushing test, shape test, specific gravity and bitumen extraction test. Test for virgin bitumen and modified bitumen are softening and penetration test.


Author(s):  
E. R. Brown ◽  
Stuart Mager

The National Center for Asphalt Technology (NCAT) has developed a test method to determine the asphalt content of hot-mix asphalt (HMA) mixtures by ignition. In the ignition method, an HMA sample is subjected to heat of 538°C (1,000°F) in a furnace to ignite and burn the asphalt cement (AC) from the aggregate. The difference in weight of the sample before and after is used to determine the asphalt content of the mixture. The aggregate recovered after ignition testing may then be used for gradation analysis. A round-robin study was completed by NCAT to determine the accuracy and precision of the ignition method. The round-robin test program is discussed, as well as the accuracy and precision values determined for the measured AC content and gradation using the ignition method. The results of the round-robin study indicate that the ignition method can measure the AC content of HMA mixtures with greater precision than solvent-extraction methods, without significantly affecting the gradation of the aggregate. This test method has shown excellent potential for replacing existing test methods for measuring asphalt content.


2020 ◽  
Vol 38 (5A) ◽  
pp. 789-800
Author(s):  
Duaa A. Khalaf ◽  
Zaynab I. Qasim ◽  
Karim H. Al Helo

This research investigates the behavior of Stone Matrix Asphalt mixtures (SMA) modified with styrene-butadiene-styrene (SBS) polymer at four percentages (1, 2, 3 and 4%) by weight of asphalt cement. The moisture susceptibility and rutting were taken into consideration in this study. To achieve the objective of this research the superpave system is conducted to design the asphalt mixtures. The physical properties of aggregate, bitumen and other mix materials were assessed and evaluated with the laboratory tests. The mixtures were prepared using penetration Graded (40-50) bitumen and a chemical named Polypropylene Fibers was used as a stabilizing additive. Fibers have been used in SMA mixtures for two main reasons: To increase the toughness and fracture resistance of hot mix asphalt (HMA) and to act as a stabilizer to prevent drain down of the asphalt binder. The laboratory tests include indirect tensile strength test, Marshall stability and retained Marshall Stability test (RMS). For rutting test the Roller wheel compactor is used for preparing the asphaltic samples and Wheel tracking device is used to evaluate the rutting of asphaltic slabs. The results showed that the SBS polymer asphalt mixture gave better moisture sensitivity and better fracture resistance according to the study.It is noted that indirect tensile strength ratio (TSR) increases by 93.1 % and the rut depth decreases by 32.5 % when adding 3% SBS polymer to SMA.


2015 ◽  
Vol 44 (1) ◽  
pp. 20140392 ◽  
Author(s):  
Zhesheng Ge ◽  
Hao Wang ◽  
Hao Yao ◽  
Qingshan Zhang ◽  
Long Zhang

Sign in / Sign up

Export Citation Format

Share Document