scholarly journals The impact of fires on the landscapes of the Baikal-Dzhugdzhur type underclimate fluctuations

2022 ◽  
Vol 962 (1) ◽  
pp. 012025
Author(s):  
O F Malykh ◽  
V P Makarov ◽  
T V Zhelibo ◽  
E A Banshchikova

Abstract In light coniferous forests of the Baikal-Dzhugdzhur type fires are considered as factors and processes inseparable from the forest landscapes and their dynamics. The study period of 1998–2015 is highlighted as extremely arid. In 2008, 2013–2014, 2018 conducted ground studies of the state of vegetation after fires in the area of Vitim Plateau. The conditions of arid period with high frequency, duration and intensity of fires were the main factors in the dynamics of transformation of the structure of mountain-taiga larch forests. Analysis of cruising materials and expedition research showed that from 1996 to 2015 the area of larch forests with canopy density of 5–7% decreased by 45–50%. The area of burned forests and thin forests increased by 45-48%, and the area of shrubs – by 17.0%. The main part of forests is disturbed at the foot of the mountains and in intermountain depressions, at altitudes of 942 -1100 m. Strong desiccation of the ground cover and consistent ground fires with complete loss of trees and undergrowth activated natural processes of bush formation and prairiefication. The duration and degree of fluctuations in climatic parameters determine the nature of the impact of fires on Baikal-Dzhugdzhur larch forests and the degree of their transformation.

Author(s):  
A. Yu. Bibaeva ◽  

The factors of pyrogenic impact on the taiga geosystems of the Western Baikal region against the background of the modern transformation of the global atmospheric circula-tion are studied in the paper. The results of world scientific research on modeling climate change and related adverse weather phenomena (prolonged droughts, thunderstorm activity, etc.) are presented. The natural factors contributing to the increase in the pyrogenic transformation of geosystems are described. The study of the spatio-temporal distribution of fires is carried out on the basis of data from remote sensing of the Earth. Information about unfavorable weather conditions and dangerous hydrometeorological phenomena, data on atmospheric phenomena (thunderstorm activity), daily values of air temperature and soil temperature under natural cover at different depths are analyzed in order to factorial analysis of forest fire sources in the study area. The characteristic of the current stage of geosystems is given based on field research conducted in June 2020. It was revealed that catastrophic fires registered in the study area in 1997 and 2015 occurred against the background of minimal thunderstorm activity. At the same time, in the central part of the Western Baikal region thunderstorms were the leading factor in the 2015 fires. Five years after the fire, the restoration of mountain taiga light coniferous forests is characterized by the predominance of the community of Chamaenerion angustifolium (L.) Scop. The successional dynamics of the geosystems of mountain taiga dark coniferous forests is going through the Betula rotundifolia Spach. with Ledum palustre L. and cereal-forb ground cover. Undergrowth of tree species (mainly pine) is rare and uneven about 800–1200 specimens per hectare.


This book illustrates and assesses the dramatic recent transformations in capital markets worldwide and the impact of those transformations. ‘Market making’ by humans in centralized markets has been replaced by supercomputers and algorithmic high frequency trading operating in often highly fragmented markets. How do recent market changes impact on core public policy objectives such as investor protection, reduction of systemic risk, fairness, efficiency, and transparency in markets? The operation and health of capital markets affect all of us and have profound implications for equality and justice in society. This unique set of chapters by leading scholars, industry insiders, and regulators sheds light on these and related questions and discusses ways to strengthen market governance for the benefit of society at large.


2021 ◽  
Vol 11 (3) ◽  
pp. 132
Author(s):  
Anna McNamara

The impact of Covid-19 placed Higher Education leadership in a state of crisis management, where decision making had to be swift and impactful. This research draws on ethea of mindfulness, actor training techniques, referencing high-reliability organisations (HRO). Interviews conducted by the author with three leaders of actor training conservatoires in Higher Education institutions in Australia, the UK and the USA reflect on crisis management actions taken in response to the impact of Covid-19 on their sector, from which high-frequency words are identified and grouped thematically. Reflecting on these high-frequency words and the thematic grouping, a model of mindful leadership is proposed as a positive tool that may enable those in leadership to recognise and respond efficiently to wider structural frailties within Higher Education, with reference to the capacity of leaders to operate with increased mindfulness, enabling a more resilient organisation that unlocks the locus of control.


2011 ◽  
Vol 45 (3) ◽  
pp. 111-119 ◽  
Author(s):  
Magdy F. Iskander ◽  
Zhengqing Yun ◽  
Nuri Celik ◽  
Hyoungsun Youn ◽  
Nobutaka Omaki ◽  
...  

AbstractEmerging homeland security applications require low-cost and fast, deployable, high-frequency (HF) radar systems and the ability to operate in challenging terrain environments. With the need to cover as many border and coastal areas as possible, taking advantages of available transmitter resources to track targets using passive radar technologies is yet another area of research of considerable interest. In this paper, we describe the development of an HF radar system that meets these operational challenges, and we also highlight some recent implementation of the passive radar technology for homeland security applications. Specifically, we describe the design of a novel, electrically small HF antenna system consisting of three helical elements, one connected to the feed port while the other two are folded arms terminated with switchable loads. The antenna is 0.90-m (<3 feet) high with a small ground disk of 0.60 m (∼2 feet) diameter. The antenna is self-resonant at multiple frequencies (5.7, 16, 20.5, and 27.7 MHz) and with input impedance values that can be easily matched to a 50-Ω coaxial feed. Values of the electrical size ka range from 0.44 at 30 MHz down to 0.08 at 5.7 MHz. The achieved bandwidths range from 1.4% up to 12% and associated efficiencies range from 66.2% to 76% within the HF band (3‐30 MHz). As for the operational requirement in challenging terrain environments, a setup in a hilltop-type environment with a slope terrain and surface roughness was considered. A propagation modeling and ray-tracing approach was used to evaluate the impact of such terrain conditions on the effective interelement spacing of an HF radar antenna array and the subsequent impact on its beamforming and beam steering performance. It is shown that while the effect of the slope on the effective interelement spacing of the array could be very significant, diffraction effects from surface roughness resulted in a much smaller, but significant, error of about 18°. Results from some initial work on the implementation of passive radar technology, with focus on addressing the bandwidth requirement to ensure practical resolution values, are also described. It is shown that signals from wide-band transmitters (e.g., High Definition Television [HDTV] signals) rather than those from radio stations are required to provide acceptable range resolution. These as well as simulation and experimental results of the antenna design, and results from beamforming simulations illustrating the effect of a rough hilltop terrain on the HF radar performance are described.


2021 ◽  
Vol 9 (2) ◽  
pp. 147
Author(s):  
James A. Pollard ◽  
Elizabeth K. Christie ◽  
Susan M. Brooks ◽  
Tom Spencer

Gravel barriers represent physiographic, hydrographic, sedimentary, and ecological boundaries between inshore and open marine offshore environments, where they provide numerous important functions. The morphosedimentary features of gravel barriers (e.g., steep, energy reflective form) have led to their characterization as effective coastal defense features during extreme hydrodynamic conditions. Consequently, gravel barriers have often been intensively managed to enhance coastal defense functions. The Blakeney Point Barrier System (BPBS), U.K., is one such example, which offers the opportunity to investigate the impact of alternative management regimes under extreme hydrodynamic conditions. The BPBS was actively re-profiled along its eastern section from the 1950s to the winter of 2005, whilst undergoing no active intervention along its western section. Combining an analysis of remotely sensed elevation datasets with numerical storm surge modeling, this paper finds that interventionist management introduces systemic differences in barrier morphological characteristics. Overly steepened barrier sections experience greater wave run-up extents during storm surge conditions, leading to more extreme morphological changes and landward barrier retreat. Furthermore, while high, steep barriers can be highly effective at preventing landward flooding, in cases where overwashing does occur, the resultant landward overtopping volume is typically higher than would be the case for a relatively lower crested barrier with a lower angled seaward slope. There is a growing preference within coastal risk management for less interventionist management regimes, incorporating natural processes. However, restoring natural processes does not immediately or inevitably result in a reduction in coastal risk. This paper contributes practical insights regarding the time taken for a previously managed barrier to relax to a more natural state, intermediary morphological states, and associated landward water flows during extreme events, all of which should be considered if gravel barriers are to be usefully integrated into broader risk management strategies.


2021 ◽  
Vol 13 (13) ◽  
pp. 2537
Author(s):  
Yangcen Zhang ◽  
Xiangnan Liu ◽  
Meiling Liu ◽  
Xinyu Zou ◽  
Qian Zhang ◽  
...  

High-frequency disturbance forest ecosystems undergo complex and frequent changes at various spatiotemporal scales owing to natural and anthropogenic factors. Effectively capturing the characteristics of these spatiotemporal changes from satellite image time series is a powerful and practical means for determining their causes and predicting their trends. Herein, we combined the spatiotemporal cube and vegetation indices to develop the improved spatiotemporal cube (IST-cube) model. We used this to acquire the spatiotemporal dynamics of forest ecosystems from 1987 to 2020 in the study area and then classified it into four spatiotemporal scales. The results showed that the cube-core only exists in the increasing IST-cubes, which are distributed in residential areas and forests. The length of the IST-cube implies the duration of triggers. Human activities result in long-term small-scope IST-cubes, and the impact in the vicinity of residential areas is increasing while there is no change within. Meteorological disasters cause short-term, large scope, and irregular impacts. Land use type change causes short-term small scope IST-cubes and a regular impact. Overall, we report the robustness and strength of the IST-cube model in capturing spatiotemporal changes in forest ecosystems, providing a novel method to examine complex changes in forest ecosystems via remote sensing.


Sign in / Sign up

Export Citation Format

Share Document