scholarly journals Climate trends and climate change scenarios in Ho Chi Minh City

2022 ◽  
Vol 964 (1) ◽  
pp. 012009
Author(s):  
Anh Ngoc Le ◽  
Thi Nguyen Vo ◽  
Van Hong Nguyen ◽  
Dang Mau Nguyen

Abstract This paper reviews the trends of climate and climate change scenarios in Ho Chi Minh City (HCMC). The linear regression method is used to determine the trend and variation of past climate (1980-2019) at Tan Son Hoa station. The annual average temperature tends to increase about 0.024°C/year (r2=0.54) and the rainfall tends to increase about 6.03 mm/year (r2=0.67). For temperature scenario, by 2030 the annual average temperature in the whole city will increase from 0.80- 0.81°C (RCP4.5) and 0.92-0.98°C (RCP8.5). By 2050, it will increase 1.23-1.33°C (RCP4.5) and 1.55-1.68°C (RCP8.5). By 2100, it will increase 1.75-1.88°C (RCP4.5) and 3.20-3.55°C (RCP8.5) compared to the base period. Regarding rainfall scenario, in 2030, the city-wide average rainfall will increase by 12-21% (RCP4.5) and by 12-17% (RCP8.5). By 2050, the average rainfall is likely to increase by 13-15% (RCP4.5) and 15-17% (RCP8.5). By 2100, the average rainfall is likely to increase by 18-22% (RCP4.5) and 20-21% (RCP8.5) compared to the base period.

Author(s):  
Mai Van Khiem

Abstract: This article presents the results of constructing climate change scenarios for Ho Chi Minh City (HCMC)based on the climate change scenarios of Vietnam published in 2016 by the Ministry of Natural Resources and Environment. Four high- resolution regional climate models include CCAM, clWRF, PRECIS, RegCM were used to downscale results of global climate models. The results show that the annual average temperature in HCMC tends to increase in the future compared to the baseline period 1986-2005, the increase depends on each RCP scenario. By the end of the century, the annual average temperature in HCMC had an increase of about 1.7÷1.9°C under the RCP4.5 scenario and 3.2÷3.6°C under RCP8.5.Meanwhile, annual rainfall in HCMC tends to increase in most periods under both of RCP scenarios. By the end of the century, annual rainfall in HCMC increases from 15% to 25% in the RCP4.5 scenario and 20-25% in the RCP8.5 scenario. Annual rainfall in coastal areas increases more than inland areas. Keyword: Climate change scenarios, Ho Chi Minh city


2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


Author(s):  
Yufei Jiao ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Qingtai Qiu ◽  
Xiaojiao Zhang ◽  
...  

Abstract Precipitation and temperature data, such as the homogeneity, trend, abrupt change, and periodicity, obtained at 40 meteorological stations in the Daqing River Basin from 1980 to 2015 are analyzed using the Mann–Kendall method, anomaly accumulation, Rescaled range analysis (R/S analysis) and wavelet transform. The regularity of climate change is studied to provide guidelines for the rational utilization of water resources. The results show that the annual precipitation has an insignificant upward trend and suddenly changes in 2007. The precipitation evolution can be divided into three types of periodicity, that is, 22–32, 8–16, and 3–7 year time scales, where the 28 year scale is the first main period of precipitation change. The annual average temperature shows a notable upward trend, with 1992 as the change year. The annual average temperature can be divided into three types of periodicity, that is, the 25–32, 14–20, and 5–10 year time scales, where the 28 year scale is the first main period of temperature change. In conclusion, the climate of the Daqing River Basin gradually turns into humid and hot climate. The results provide valuable reference for the assessment of the effects of climate change, and the management of water resources.


Author(s):  
Felicia CHEŢAN ◽  
Cornel CHEŢAN ◽  
Alina ŞIMON ◽  
Valeria DEAC ◽  
Marius BĂRDAŞ

The paper presents the influence of the conventional and minimum tillage system, the fertilization system and the agricultural year (expressed by different climatic conditions) on the production and economic efficiencyof the soybean culture. The experience poly-factorial, was placed on the type of soil Phaeozem (clay, iluvial) in the Transylvanian Plain (with multi-annual average temperature of 9.1°C and multi-annual average rainfall of531.0 mm). The soybean culture responded favorably to the minimal tillage technology, the production being veryclose to that obtained in the conventional system. The application of the “minimum tillage” system to the soybeanculture requires a fuel consumption of 63.1 l/ha at the price of 328.12 lei/ha compared to the classic technology atwhich 78.6 l/ha is consumed at the price of 412.36 lei/ha, is 84.24 lei/ha in favor of the minimum system.


2012 ◽  
Vol 4 (2) ◽  
pp. 147-150 ◽  
Author(s):  
MG Ferdous ◽  
MA Baten

An agro-climatic study was conducted at three regions of Rajshahi division with 50 (1961-2010) years of climatic data (temperature, rainfall, relative humidity and sunshine) to observe the climatic variability. The annual average temperature was showed decreasing trends over Rajshahi, Rangpur and Dinajpur regions by 0.0134, 0.0262 and 0.01180C/year. Annual average rainfall showed increasing trends over Rangpur and Dinajpur region by 14.971, 18.673mm/year and decreasing trends over Rajshahi region by 3.0698mm/year. Average relative humidity was showed increasing trends over Rajshahi, and Dinajpur region by 0.0261, and 0.0269%/year. Over Rangpur region, the decreasing trend was observed by 0.0599%/year. Decreasing trends of sunshine were observed for all regions. Distributions of regional average of climate factors in the study area were observed TRangpur> TRajshahi> TDinajpur, RRangpur> RDinajpur> RRajshahi, RHRangpur> RHDinajpur> RHRajshahi and SDinajpur> SRajshahi> SRangpur for temperature, rainfall, relative humidity and sunshine, respectively.DOI: http://dx.doi.org/10.3329/jesnr.v4i2.10165J. Environ. Sci. & Natural Resources, 4(2): 147-150, 2011


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 115 ◽  
Author(s):  
Han Li ◽  
Wei Song

The Lancang-Mekong River is an important international river in Southeastern Asia. In recent years, due to climate change, natural disasters, such as drought and flooding, have frequently occurred in the region, which has a negative effect on the sustainable development of the social economy. Due to the lack of meteorological monitoring data in the six countries across the region, the study of the characteristics of climate change in this area is still scarce. In this paper, we analyze the characteristics of climate change in the Lancang-Mekong sub-region (LMSR) during 2020–2100 based on the climatic data of CMIP5, using the linear trend rate method, cumulative anomaly method, the Mann–Kendall test, and Morlet wavelet analysis. The results showed that the annual mean temperature and annual precipitation in the LMSR increased significantly. The annual average temperature in this area increased at a rate of 0.219 °C/10a (p < 0.05) and 0.578 °C/10a (p < 0.05) in the RCP4.5 and RCP8.5 scenarios, respectively; the annual precipitation in the area was 29.474 mm/10a (p < 0.05) and 50.733 mm/10a (p < 0.05), respectively. The annual average temperature in the region changed abruptly from low to high temperatures in 2059 for the RCP4.5 scenario and 2063 for RCP8.5. The annual precipitation in the area changed from less to more in 2051 for the RCP4.5 scenario and 2057 for RCP8.5. The results of wavelet analysis showed that the annual mean temperature in the LMSR had no significant change period at the 95% confidence level under the scenario of RCP4.5 and RCP8.5. Under the scenario of RCP4.5 and RCP8.5, the annual precipitation had a significant 3.5-year and 2.5-year periodicity, respectively. Extreme climate events tended to increase against the background of global warming, especially in high emission scenarios.


Author(s):  
Valentina Davydova-Belitskaya ◽  
Andrea Liliana Godínez-Carvente ◽  
René Navarro-Rodríguez ◽  
Martha Georgina Orozco-Medina

In recent decades, great attempts have been made to create high-quality climatic data sets and spatial resolution on a continental and national scale, as well as the analysis of their variability and change in daily extremes. However, in Mexico there is still no high-resolution database at a national level that complies with quality control, including the review of homogeneity of long series. This paper shows the results of variability analysis and the detection of climate change signs in the state of Jalisco, performed in a high-resolution database developed for the maximum, minimum and average temperature according to the quality control procedures of climatic records. From these two sets, the spatial behavior of annual average temperature estimated for three climatic periods was analyzed. Among the results obtained with stations which have complied with quality control, the presence of annual average temperature increases at 0.31°C in 1971-2000, 0.61°C in 1981-2010 and a very intense increase, 0.81°C for the period 1991-2010. Likewise, it was observed that the Jalisco coasts show an increase of 0.2 to 0.4°C, while the continental region registers an increase up to 0.8°C.


2019 ◽  
Vol 32 (14) ◽  
pp. 4299-4320 ◽  
Author(s):  
Yuchuan Lai ◽  
David A. Dzombak

Abstract Time series of historical annual average temperature, total precipitation, and extreme weather indices were constructed and analyzed for 103 (for temperature indices) and 115 (for precipitation indices) U.S. cities with climate records starting earlier than 1900. Mean rate of change and related 95% confidence bounds were calculated for each city using linear regression for the full periods of record. Box–Cox transformations of some time series of climate records were performed to address issues of non-normal distribution. Thirteen cities among the nine U.S. climate regions were selected and further evaluated with adequacy diagnoses and analyses for each month. The results show that many U.S. cities exhibit long-term historical increases in annual average temperature and precipitation, although there are spatial and temporal variations in the observed trends among the cities. Some cities in the Ohio Valley and Southeast regions exhibit decreasing or statistically nonsignificant increasing trends in temperatures. Many of the cities exhibiting statistically significant increases in precipitation are in the Northeast and Upper Midwest regions. The records for the cities are individually unique in both annual and monthly change, and cities within the same climate region sometimes exhibit substantially different changes. Within the full periods of record, discernible decade-long subtrends were observed for some cities; consequently, analysis of selected shorter periods can lead to inconclusive and biased results. These statistical analyses of constructed time series of city-specific long-term historical climate records provide detailed historical climate change information for cities across the United States.


2012 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Zsolt Kotroczó ◽  
Zsuzsa Veres ◽  
István Fekete ◽  
Mária Papp ◽  
János Attila Tóth

Abstract - Climate change is a global problem. During the last century the increase of annual average temperature was 0.68°C, while the decrease of annual average of precipitation was 83 mm in Hungary. According to the long term meteorological data of Síkfőkút forest ILTER site the annual average temperature increased while average of yearly precipitation decreased, the forest climate became warmer and dryer. These processes could considerably contribute to forest decline, not only in the Quercetum petraeae-cerris stand of Síkfőkút, but everywhere in the country. Species composition and structure of the forest have changed considerably, as 68% of sessile oak (Quercus petraea) and 16% of Turkey oak (Quercus cerris) have died. Forest decline resulted in the breaking up of the formerly closed canopy, and consequently, in the formation of gaps in the forest. In the gaps, a secondary canopy developed with tree species of less forestry value. As a consequence, mass regeneration of field maple (Acer campestre) appeard in the gaps. The formation of gaps accelerated the warming and aridity of forests. In the article we answer the following question: how did climatic change and changing forest structure influence the leaf-litter production in the last four decades?


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1708
Author(s):  
Yeon-Moon Choo ◽  
Sang-Bo Sim ◽  
Yeon-Woong Choe

The annual average rainfall in Busan area is increasing, causing frequent flooding of Busan’s Suyeong and Oncheon rivers. Due to the increase in urbanized areas and climate change, it is difficult to reduce flood damage. Therefore, new methods are needed to reduce urban inundation. This study models the effects of three flood reduction methods involving Oncheon River, Suyeong River, and the Hoedong Dam, which is situated on the Suyeong. Using EPA-SWMM, a virtual model of the dam and the rivers was created, then modified with changes to the dam’s height, the installation of a floodgate on the dam, and the creation of an underground waterway to carry excess flow from the Oncheon to the Hoedong Dam. The results of this study show that increasing the height of the dam by 3 m, 4 m, or 6 m led to a 27%, 37%, and 48% reduction in flooding, respectively, on the Suyeong River. It was also found that installing a floodgate of 10 × 4 m, 15 × 4 m, or 20 × 4 min the dam would result in a flood reduction of 2.7% and 2.9%, respectively. Furthermore, the construction of the underground waterway could lead to an expected 25% flood reduction in the Oncheon River. Measures such as these offer the potential to protect the lives and property of citizens in densely populated urban areas and develop sustainable cities and communities. Therefore, the modifications to the dam and the underground waterway proposed in this study are considered to be useful.


Sign in / Sign up

Export Citation Format

Share Document