scholarly journals Application TAPM-AERMOD system model to study impacts of thermal power plants in SouthEast and SouthWest areas to the air quality of HCMC: current status and according to Vietnam power planning VII toward 2030

2022 ◽  
Vol 964 (1) ◽  
pp. 012024
Author(s):  
Khue Hoang Ngoc Vu ◽  
Hang Thi Thuy Nguyen ◽  
Tam Thoai Nguyen ◽  
Bang Quoc Ho

Abstract Vietnam’s urban areas have faced serious environmental pollution issues, including water pollution, municipal waste, and air pollution. Vietnam’s real gross domestic product (GDP) has been experiencing positive growth for the past five years since 2016. And in 2019, Vietnam’s real GDP increased by 7.02% compared to the previous year. To maintain the growth rate, there is a huge amount of electricity required, not accounting for the other sectors. Thermal power plants generate more than 50% of total electricity in Vietnam, therefore, it is said that coal-fired power plants have been the major sources of air emissions and caused a serious impact on the environment. Recently air pollution is a hot issue in Ho Chi Minh City (HCMC), the air quality is being polluted by PM2.5, O3, CO, NO2, and TSP. Despite that, the neighboring areas of the city will install more coal-fired power plants, threatening to degrade the quality of the environment. Therefore, the objectives of this study are (i) Modeling the impacts of thermal power plants in SouthEast and SouthWest areas on the air quality of HCMC for two scenarios (current status in 2019 and future according to Power planning VII (adjusted) toward 2030); And (ii) Develop interprovincial air quality protection solutions. The research applied the TAPM model for meteorological modeling and AERMOD model for air pollution dispersion. The annual average PM2.5 concentration in the study area was approximately 0.121 μg/m3 and the highest concentration at a location close to Vinh Tan thermal power center with 8.61 μg/m3. NO2 the annual average concentration from power plants in 2020 and 2030 blows to HCMC and contributes to HCMC’ air quality only 0.01 and 0.03 μg/m3, respectively. The 24 hours average concentration of SO2 from power plants in 2030 blows to HCMC and contributes to HCMC’ air quality of 10 μg/m3. The 24 hours average SO2 levels of HCMC in 2030 is 39.2 μg/m3, higher than WHO’s guideline (20 μg/m3). Currently, air pollution in HCMC is polluted by PM2.5, SO2, and NO2 and cause bad effect to public health. However, in the future with the contribution of 33 thermal power plants under intercity/provinces air pollution dispersion, air pollution HCMC will be worse and affect public health. Air pollution HCMC will be a huge impact on HCMC’s public health in the future due to the contribution of 33 thermal power plants under intercity/provinces air pollution dispersion. The paper developed 7 main mitigation measures to reduce the impacts of air pollution from the power plan and reduce the impacts of air pollution on HCM’s public health. The measures are focused on using clean fuel, advanced technology, and controlling trans-provincial air pollution.

2019 ◽  
Vol 10 (1) ◽  
pp. 56-65 ◽  
Author(s):  
A. Issakhov ◽  
◽  
T. Yang ◽  
A. Baitureyeva ◽  
◽  
...  

Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


2020 ◽  
Vol 1 (1) ◽  
pp. 31-41
Author(s):  
Anton V. Nikonov

The article describes the difficulties faced by organizations engaged in engineering and geodetic work at power plants, with participation in procurement. It is shown that the majority of procurement participants are representatives of small and medium-sized businesses. The factors affecting the reduction in the price offer are given. It is noted that a decrease in the initial (maximum) price during the procurement procedures varies from 75 to 90%, which cannot but lead to a decrease in the quality of work, and often to falsification of reporting documentation. Conclusions are made on the example of three realized purchases by the definition of the contractor for geodetic work at thermal power plants.


2021 ◽  
Vol 22 (1) ◽  
pp. 287-297
Author(s):  
Dilnoza Umurzakova

The purpose of this article is to develop high-quality combined automatic control systems (ACS) for the water level in the drum of steam boilers of thermal power plants (TPPs), which can significantly improve the quality of regulation and increase the efficiency of TPPs in a wide range of load changes. To improve the quality of water level control in the drum of steam generators of nuclear power plants with a pressurized water-cooled power reactor (PWPR), it is proposed to use a combined automatic control system based on a control loop with a correcting PI-controller tuned to a symmetrical optimum, with smoothing the reference signal and device compensation of the most dangerous internal and external measurable disturbances. A technique has been developed for assessing the impact of changes in the quality characteristics of transients of combined self-propelled guns by the water level in the drum of steam boilers and steam generators on the safety, reliability, durability, and efficiency of thermal power equipment of thermal power plants. Comparison was made of direct indicators of the quality of three ACS (typical and three-pulse, digital system with an observer state, and the proposed combined ACS). The simulation results of transients of the proposed and typical three-pulse self-propelled guns confirmed the advantages of the first. ABSTRAK: Artikel ini bertujuan bagi membina sistem kombinasi automatik (ACS) berkualiti tinggi bagi aras air dalam drum dandang stim tenaga terma logi kuasa (TPP). Ini dapat meningkatkan mutu peraturan dan meningkatkan kecekapan TPP secara signifikan dengan pelbagai perubahan beban. Bagi meningkatkan kualiti kawalan aras air dalam drum penjana wap loji kuasa tenaga nuklear dengan reaktor berpendingin air bertekanan (PWPR). Gabungan sistem kawalan automatik berdasarkan gelung kawalan dengan pembetulan PI telah dicadangkan dan diselaraskan simetri secara optimum, dengan melancarkan isyarat rujukan dan pembetulan peranti dari gangguan yang boleh diukur dari dalam dan luar. Satu teknik telah dibina bagi menilai kesan perubahan ciri kualiti transien gabungan berjentera pada aras air di tong dandang stim dan drum penjana wap pada keselamatan, kebolehpercayaan, ketahanan dan kecekapan peralatan tenaga terma loji janakuasa. Perbandingan dibuat pada kualiti tiga ACS (sistem digital khas dan tiga signal dengan keadaan pemerhati dan gabungan ACS yang dicadangkan). Hasil sistem simulasi transien yang dicadangkan dan tiga signal biasa berjentera mengesahkan kelebihan pada yang pertama.


Sign in / Sign up

Export Citation Format

Share Document