scholarly journals Identification of groundwater recharge potential zones in a study region of South Kerala

2021 ◽  
Vol 1197 (1) ◽  
pp. 012009
Author(s):  
Lini R Chandran ◽  
V Ardra ◽  
Y MuhammedIrfan ◽  
M S Sruthy ◽  
V S UnniNair

Abstract Groundwater is considered as a precious natural resource which serves as the main source of agriculture and domestic purposes. Kerala state is blessed with around 3000mm rainfall annually because of two prominent monsoon. But the available water is insufficient to meet the demand of people. Increase in population and water demand cause threat to overall water balance. Ground water resource must be managed well to overcome these problems. Ground water recharging is a major requirement for sustainable utilization of water resources. It also becomes highly relevant to assess the water recharge zones and to preserve water quality. This study proposes identification of suitable water recharge sites in Karamana river basin, Thiruvananthapuram, Kerala. Karamana river supplies majority of drinking water in Thiruvananthapuram district. Since its quality is deteriorating day by day, appropriate locations for recharging groundwater is identified using GIS technique. Various thematic maps like soil, slope, drainage, geomorphology and land utilization that affect the groundwater recharge is integrated and weighted overlay analysis is adopted to find the groundwater recharge potential map. Weights are assigned using Analytical Hierarchy Process (AHP) by constructing a pairwise comparison matrix. The result depicts the groundwater recharge potential zones which is divided into very high, high, moderate, low and very low potential areas.

Telematika ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 93
Author(s):  
Bambang Yuwono ◽  
Awang Hendrianto Pratomo ◽  
Heru Cahya Rustamaji ◽  
Puji Pratiknyo ◽  
Mochammad Assofa Indera Jati

Water is a basic need for humans and other living things. Various sources of water on this earth has formed a system of close interaction with the components of living things in it. Over the years, water resources have changed in terms of both quality and quantity. This can be due to population growth in addition to the natural changes in nature. The more narrow field of water absorption followed by high water consumption causes the supply of ground water reserves can be threatened. So, we need a mapping and ground water recharge calculations to assist in the monitoring of groundwater reserves.The method used in this research is the Water Balance (keseimbangan air)method. This method is based on any incoming rain water will be equal to the output evapotranspiration and runoff hereinafter this method is applied in the application. Factors affecting groundwater recharge the water balance method is precipitation, evapotranspiration and run off. Information og groundwater recharge is also displayed on the map using Google Map function are related to the database system to produce informative mapsCalculation of groundwater recharge is applied to the daily rainfall data input into the application which then included in the water balance equation method so it can be easy to determine the value of groundwater recharge. Groundwater recharge information can be displayed in the form of mapping, making them easier to understand visually.Based on testing, the highest recharge results of this research on the Kemput station is 1119,5 mm/year with rainfall of 2750 mm/year. Seyegan and Bronggang station is 1026,25 mm/year with rainfall of 2625 mm/year. Angin-angin and Prumpung station is 933 mm/year with rainfall of 2500 mm/year. Beran and Gemawang station is 839.5 mm/year with rainfall of 2375 mm/year. Plataran station is 808.42 mm/year with rainfall of 2333 mm/year. Godean station is 699.5 mm/year with rainfall of 2187 mm/year and the lowest at Tirto Tanjungand Santan stastion 560 mm / year with rainfall of 2000 mm / year.


2016 ◽  
Vol 9 (6) ◽  
pp. 700-712
Author(s):  
O.D. Onafeso ◽  
A.O. Olusola ◽  
S.A. Adeniyi

Indirect physical methods of assess groundwater recharge rely on the measurement or estimation of soil physical parameters, which along with soil physical principles; can be used to estimate the potential or actual recharge. However, the deep percolation method uses a daily water- budget approach to simulate deep percolation. In this method, the model computes daily fluxes of water into and out of a volume extending from the top of foliage to the bottom of the root zone and accounts for changes in water content. In most environments, deep percolation is destined to recharge the saturated systems that are tapped by wells. Deep percolation technique was deployed to determine the rate of ground water recharge in the Voinjama region of Liberia, and also establish points of lineaments where wells can be dug for water supply. The perimeter of the hypothesized basin is about 28.9km while the length of the thalweg of the mainstream is about 11km. the average width of the basin area is 5.9km while the circumference of the equivalent circular area is 25.33km and compactness coefficient (R) of the basin is computed at 1.14. The elongation ratio (Er) is computed at 0.73km. The diurnal recharge computed from Deep Percolation was 6712.21 cm3 /km2 per annum. In conclusion, this study aids the restoration of water supply system destroyed during the war periods emphasizing the abundant water in the hydrological system and viable ground water recharge adequate for exploitation in a near uniform geology. Several faults and crevices scattered abroad the area were recorded indicating good lineament distribution and abundant aquifer recharge.Keywords: Hydrogeology, Deep Percolation Method, Groundwater, Recharge


2015 ◽  
pp. 75-83 ◽  
Author(s):  
Srilert Chotpantarat ◽  
Jaturon Konkul ◽  
Satika Boonkaewwan ◽  
Thanop Thitimakorn

KaengKhoi District (SaraburiProvince, Thailand) suffers from a surface water shortage due to increasing demand from domestic use and crop production, particularly in the drought season. Groundwater resources are an additional source of freshwater in this area, especially for agricul-tural purposes, but to be sustainable its usage should not exceed long-term groundwater recharge. Evaluation of the groundwater recharge potential is therefore essential to determine the sustain-able use level for groundwater resources. This study aimed to determine the groundwater re-charge potential using the geographic information system (GIS) around the Land Development Facilities of Chulalongkorn University at KaengKhoi District, Thailand. The hydrologic and geo-logic features affecting groundwater recharge potential into the groundwater system are the linea-ments, drainage density, lithology and land cover/land use. The weighting of these factors were derived from integration of the interrelationship of the major and minor effects of each contri-buting factor. Then GIS overlay was used to determine the influence of the hydrologic and geo-logic effects on total groundwater recharge potentiality, classified into five categories: very high, high, moderate, low and very low. The highest recharge potentialzone was located in the down-stream areas. The map generated revealed that about 50% of the study area had a medium ground-water recharge potential, mainly located in the eastern upstream part and the central area.


2019 ◽  
Vol 9 (4) ◽  
pp. 38
Author(s):  
N. NAGARAJAN ◽  
S. SIVAPRAKASAM ◽  
K. KARTHIKEYAN ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document