scholarly journals Ensuring effective transit of electrical energy using the laws of environmental cybernetics and the foundations of automatic control

2022 ◽  
Vol 1211 (1) ◽  
pp. 012013
Author(s):  
A N Kachanov ◽  
V A Chernyshov ◽  
A Yu Burova ◽  
R P Belikov ◽  
M Sh Garifullin

Abstract The necessity of constant monitoring and maintenance of the environmental component in the organization of electric energy transit is substantiated. An original technique aimed at improving the efficiency of the functioning of the air electric network, based on the laws of environmental cybernetics and the basics of automatic control, is considered. The proposed scientific tools allow you to automatically monitor and control all processes that affect the efficiency of electric energy transit from the point of view of its environmental friendliness, and also allows you to form optimal regulatory influences aimed at stabilizing negative processes and disturbing factors arising inside the artificial electrobiological organism “Electric Line - Nature - Man”, which violate the stability of its ecological state.

2019 ◽  
pp. 37-47
Author(s):  
Yao Yueqin ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

Analysis and formalization of the monitoring and automatic control tasks of the MR for the movement and execution of various types of technological operations on inclined and vertical ferromagnetic surfaces are obtained. Generalized structure of mobile robotic complex is shown with main subsystems consideration. Critical analysis of the current state of the problem of development of universal structures of mobile robots (MRs) for the various types of technological operations execution and elaborations of computerized systems for monitoring and control of MR movement is done. In particular, wheeled, walked and crawler type MRs with pneumatic, vacuum-propeller, magnetic and magnetically operated clamping devices to grip with vertical and ceiling surfaces are reviewed. The constructive features of the crawler MR with magnetic clamping devices capable of moving along sloping ferromagnetic surfaces are considered. The basic technical parameters of the MR are shown for the further synthesis of computerized monitoring and automatic control systems. Formalization of the tasks of monitoring and control of the MR positioning at the processing of large area ferromagnetic surfaces is considered from the point of view of control theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Margarita Rivero ◽  
Sergei V. Rogosin ◽  
José A. Tenreiro Machado ◽  
Juan J. Trujillo

The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour, from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future progress that emerge are also tackled.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775178
Author(s):  
Wu-Sung Yao

In general, eccentric gravity machinery is a rotation mechanism with eccentric pendulum mechanism, which can be used to convert continuously kinetic energy generated by gravity energy to electric energy. However, a stable rotated velocity of the eccentric gravity machinery is difficult to be achieved only using gravity energy. In this article, a stable velocity control system applied to eccentric gravity machinery is proposed. The dynamic characteristic of eccentric gravity machinery is analyzed and its mathematical model is established, which is used to design the controller. A stable running velocity of the eccentric gravity machinery can be operated by the controlled servomotor. Due to disturbances being periodic, repetitive controller is installed to velocity control loop. The stability performance and control performance of the repetitive control system are discussed. The iterative algorithm of the repetitive control is executed by a digital signal processor TI TMS320C32 floating-point processor. Simulated and experimental results are reported to verify the performance of the proposed eccentric gravity machinery control system.


2004 ◽  
Vol 14 (11) ◽  
pp. 3821-3846 ◽  
Author(s):  
GAMAL M. MAHMOUD ◽  
TASSOS BOUNTIS

Dynamical systems in the real domain are currently one of the most popular areas of scientific study. A wealth of new phenomena of bifurcations and chaos has been discovered concerning the dynamics of nonlinear systems in real phase space. There is, however, a wide variety of physical problems, which, from a mathematical point of view, can be more conveniently studied using complex variables. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. In this survey, we shall focus on such classes of autonomous, parametrically excited and modulated systems of complex nonlinear oscillators. We first describe appropriate perturbation approaches, which have been specially adapted to study periodic solutions, their stability and control. The stability analysis of these fundamental periodic solutions, though local by itself, can yield considerable information about more global properties of the dynamics, since it is in the vicinity of such solutions that the largest regions of regular or chaotic motion are observed, depending on whether the periodic solution is, respectively, stable or unstable. We then summarize some recent studies on fixed points, periodic solutions, strange attractors, chaotic behavior and the problem of chaos control in systems of complex oscillators. Some important applications in physics, mechanics and engineering are mentioned. The connection with a class of complex partial differential equations, which contains such famous examples, as the nonlinear Schrödinger and Ginzburg–Landau equations is also discussed. These complex equations play an important role in many branches of physics, e.g. fluids, superconductors, plasma physics, geophysical fluids, modulated optical waves and electromagnetic fields.


2009 ◽  
Vol 22 (3) ◽  
pp. 329-339
Author(s):  
Marija Kacarska ◽  
Vesna Arnautovski-Toseva ◽  
Sanja Veleva

Automatic control of equipment is anticipated to represent the next logical step in the progression from passive monitoring toward plant wide automation. Automatic transfer functions, load-shedding and load sequencing are expected to find increasing application. In this paper a device named Peak Load for monitoring and control of power consumption in industrial plants is presented. It is a PLC based maxigraph developed upon the analysis of efficient and optimized use of the electrical energy and is planned to be used by medium and big industrial energy consumers with purpose to decrease the cost of their production. .


2021 ◽  
Vol 317 ◽  
pp. 04032
Author(s):  
Denis ◽  
Enda Wista Sinuraya ◽  
Jaka Windarta ◽  
Yosua Alvin Adi Soetrisno ◽  
Kurnianto Fernanda

The increase in demand for electrical energy is increasing rapidly, in line with economic growth. In developing the electricity system, electrical energy service providers must provide electrical energy according to demand with good quality. The generation of conventional electric energy systems that use fossil fuels faces depleting fossil fuel sources, poor efficiency, and environmental pollution. This technology is known as Distributed Generation (DG). Distributed Generation (DG) or Micro Grid (MG) is a small-scale power plant located close to the load. The use of distributed generators can improve the entire system's efficiency, reduce transmission losses, reduce pollution, and ensure the continuity of the distribution of electrical energy. However, the drastic increase in the use of DG causes problems in the form of voltage and frequency stability which will be disturbed due to rapid changes in the generation and loading rates. If this is left unchecked, it can harm system security and reliability. A proper control strategy will restore system stability in the event of an imbalance.


Games ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Dario Madeo ◽  
Chiara Mocenni

The effectiveness of control measures against the diffusion of the COVID-19 pandemic is grounded on the assumption that people are prepared and disposed to cooperate. From a strategic decision point of view, cooperation is the unreachable strategy of the Prisoner’s Dilemma game, where the temptation to exploit the others and the fear of being betrayed by them drives the people’s behavior, which eventually results in a fully defective outcome. In this work, we integrate a standard epidemic model with the replicator equation of evolutionary games in order to study the interplay between the infection spreading and the propensity of people to be cooperative under the pressure of the epidemic. The developed model shows high performance in fitting real measurements of infected, recovered and dead people during the whole period of COVID-19 epidemic spread, from March 2020 to September 2021 in Italy. The estimated parameters related to cooperation result to be significantly correlated with vaccination and screening data, thus validating the model. The stability analysis of the multiple steady states present in the proposed model highlights the possibility to tune fundamental control parameters to dramatically reduce the number of potential dead people with respect to the non-controlled case.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 751 ◽  
Author(s):  
Flavio Balsamo ◽  
Davide Lauria ◽  
Fabio Mottola

This paper deals with the design and control aspects of modern ship power systems within the paradigm of an all-electric ship. The widespread use of power electronic converters is central in this context due to the technological advances in automation systems and the integration of the electrical propulsion systems and other components, such as electrical energy storage systems and renewable energy sources. The issue to address in this scenario is related to the request of increased performances in dynamic operation while pursuing advantages in terms of energy savings and overall system security. In addition, the presence of large load changes requires providing robustness of the control in terms of system stability. This paper is focused on medium voltage direct current (MVDC) ship power systems and the design and control of coupled inductor DC–DC converters. The load is handled in terms of a constant power model, which generally is considered the most critical case for testing the stability of the system. The robustness of the design procedure, which is verified numerically against large and rapid load variations, allowed us to confirm the feasibility and the attractiveness of the design and the control proposal.


2021 ◽  
Vol 8 (1) ◽  
pp. 16-21
Author(s):  
Asfari Hariz Santoso ◽  
Ahmad Hermawan ◽  
Muhammad Azam Wian Panantuan

Malang City is a city that has an increasing need for electrical energy in the technological era, which today is very much needed in fulfilling daily life, both for household, social and industrial needs. One of them is the supply of electrical energy for Public Street Lighting (PJU). If you only rely on the supply of electrical energy from grid, this is a heavy burden that must be borne by the Malang City Regional Budget to pay the electric energy consumption bill for the PJU. This study aims to determine the comparison of the use of conventional PJU with solar powered PJU (PJUTS) in the area of ​​Gading Kasri Village, Klojen District, Malang City both in terms of technical installations which include solar panels, batteries, and charger controllers as well as from an economic point of view. That shines for 5 hours every day, the solar panel power specifications are 240 Wp with 37 points of light. Budget calculations using the ACS (Annual cost system) which is obtained in the 16th year the difference from the initial investment costs and revenue from sales met at BEP (break event point) amounting to Rp. 256,761,376.00.


Author(s):  
DIKSHA KHARE ◽  
SF. LANJEWAR

In parallel to developing technology, demand for more energy makes us seek new energy sources. The most important application field of this search is renewable energy resources.Wind and solar energy have been popular ones owing to abundant, ease of availability and convertibility to the electric energy. We will focus on Modeling the design and verification process for Renewable and Green Energy sources.Samples like solar,wind and tidal energy are used for making model.The term Green energy can be associated with environment-friendly Generation,transport,storage and control of electrical energy .Solar power,wind power and the natural flow of water are resources that comply with our definition of Green Energy.Since the natural fossil energy resources are limited on this planet,we have to put our focus on green power generation like solar and wind power.


Sign in / Sign up

Export Citation Format

Share Document