scholarly journals Hot Die Forming - Flat (HDF-FAl): An innovative hot forming technology for extreme lightweight in aluminum sheet alloys

Author(s):  
M.S. Niazi ◽  
P. Amborn ◽  
E. Lamers ◽  
J. Hirsch
2012 ◽  
Vol 735 ◽  
pp. 301-306 ◽  
Author(s):  
Hai Jian Liang ◽  
Xiao Wei Wu ◽  
Yong Wang ◽  
Quan Lin Jin ◽  
Zhao Li Ma ◽  
...  

This article describes the high rate superplastic forming. The high rate superplastic forming technology is a new complex process,which integrates hot stamping and superplastic forming .It has feature of rapidity of the hot stamping and character of excellent formability of the superplastic forming.We obtained the best proportion of the hot forming and the superplastic forming through simulation experiment, and formed a car’s abonnet by applying the proportion.Compared with the high rate superplastic forming,the forming quality is better than that of hot forming. and the forming time is less than that of superplastic forming. Result shows that ,the high rate superplastic forming technology can meet the requirements for mass production.


2014 ◽  
Vol 602-605 ◽  
pp. 37-40
Author(s):  
Ying Min Gao ◽  
Jing Li ◽  
Jian Hui Yao

Hydraulic parts with three sealing devices always leak in use, absorber and air spring for example. Hydraulic cylinder can be sealed by itself if friction hot forming technology is adopted on hydraulic cylinder at both ends. By going through the technology, two sealing devices of hydraulic parts are saved, the leak of hydraulic parts is avoided, the rigidity of hydraulic parts is enhanced, the structure of hydraulic parts is optimized and the service life of hydraulic parts is increased.


2020 ◽  
Vol 863 ◽  
pp. 51-58
Author(s):  
Nguyen Phan Anh ◽  
Tuyen Vo ◽  
Khanh Dien Le ◽  
Thanh Nam Nguyen

The objective of this paper is to select a set of technological forming parameters including vertical feed Δz, feeding rate of Vxy of the tool (a kind of pestle but no-cutting edges), the diameter of tool D and the revolutions per minute of tool n to achieve the highest forming ability of aluminum sheet A1050 H14 (according to JIS G3101Japanese standard) when forming metal sheet by Single Point Incremental Forming Technology-SPIF. The content of the article consists of 3 processes: Pre-design of experiment (Pre-DOE) to select of a set of reasonable limited parameters when forming aluminum sheet A1050 H14 models when forming on the existent specialized SPIF machine in the National Key Laboratory of Digital Control and System Engineering laboratory (DCSELAB); Performing aluminum sheet A1050 H14 models on the Pre-DOE to obtain the forming angle values; Evaluating the experimental results by analysis of variance; Setting up the regression equation of the angle of deformability with influence parameters; Optimization the regression equation to select an optimal set of forming parameters to gain the highest deformability of aluminum sheet A1050 H14.


2019 ◽  
Vol 116 (6) ◽  
pp. 613
Author(s):  
Cai-yi Liu ◽  
Yan Peng ◽  
Ling Kong ◽  
Lu-han Hao ◽  
Ren Zhai

High strength steel hot forming technology plays an important role in achieving lightweight vehicles, improving the safety of vehicles. The tensile strength of the blank formed by traditional hot forming process is as high as 1500–2000 MPa, the strength of the formed blank is high, but the elongation is usually low and comprehensive mechanical property is not high. In this article, the process control of material gradient properties hot forming technology is summarized through the analysis of strengthening mechanism of gradient distribution hot forming technology. Based on the traditional hot forming technology, a new hot forming technology based on partition cooling to achieve material property gradient distribution is proposed. By changing the cooling rate of blank in different zones is different, and the gradient distribution of material properties is finally obtained. The DEFORM is used to analyze the hot forming process of the blank under the nonuniform temperature field of the partition cooling. A set of partition cooling hot forming die was designed independently to verify the experimental results. The evolution mechanism of microstructure and its effect on material properties during hot forming under nonuniform temperature field with partition cooling were revealed.


Author(s):  
Vjekoslav Franetovic

Hot forming of aluminum sheet is highly influenced by the tribological behavior of the interacting surfaces of sliding pairs. Here we describe a new technique to investigate tribo-pair candidates for Quick Plastic Forming (QPF) and warm forming processes. This technique represents a bench type simulation of the real forming process where the sheet and tool interact by sliding against each other in a single motion (slide/stroke).


2010 ◽  
Vol 156-157 ◽  
pp. 582-591 ◽  
Author(s):  
Ning Ma ◽  
Ping Hu ◽  
Zong Hua Zhang

A new type of metal composite material can be manufactured by controlling heating temperature and designing the layout of cooling pipes in hot forming process of ultra high strength steel. The yield strength of this type of metal material varies from 380 MPa to 1000 MPa continuously, and its strength limitation varies from 480 MPa to 1600 MPa continuously. In this new hot forming technology, boron steel named as 22MnB5 is stamped by one-step process of hot forming to obtain the metal composite material and manufacture the part consisting of the metal composite at the same time. The hot forming technology of U-shaped part consisting of the metal composite material is provided. Then the microstructure of the U-shaped metal composite material is analyzed and the tensile test is also implemented. The experimental results show the material properties have the characteristics of continuous distribution along the main direction of energy absorption during crash process, which indicates the feasibility of hot forming technology of the metal composite material. The top-hat thin-wall structure consisting of U-shaped metal composite material is employed to analyze the crashworthiness of the new type of metal composite material. By distributing the single phase material of U-shaped composite part properly, the energy absorption ability is increased by 58.7% and the crash force is decreased by 23.4%, which indicate the new type of metal composite material has the comprehensive performance of every single phase material. So the metal composite is a good alternative material in application of crash resistance.


2013 ◽  
Author(s):  
Ji-woo Park ◽  
Jeong Kim ◽  
Beom-soo Kang

Sign in / Sign up

Export Citation Format

Share Document