scholarly journals Intelligent license plate recognition system based on digital image processing

Author(s):  
Yulong Zhang
2011 ◽  
Vol 267 ◽  
pp. 778-782 ◽  
Author(s):  
Juan Hua Zhu ◽  
Ang Wu ◽  
Juan Fang Zhu

A rapid and convenient method of license plate recognition is discussed. The color plates are preprocessed by transform gray-scale transformation and image enhancement. The license plate is located by edge detection and region search algorithm, and the character segmentation is made by projection. Finally, the template is matched, and the license plate number is recognized quickly and accurately. The experiment shows that the method used in this paper can achieve better recognition results.


This paper discusses about License plate recognition using digital processing of images, where the image of a vehicle is taken and the number plate is then recognized by various layers of digital image processing. The number plate is then allowed to undergo optical character recognition (OCR), this extracts the data and then compares it with a database containing the details of the vehicle. This allows the user to identify the type of vehicle and the identity of the person who is driving the vehicle. It will denote the user about the registration of the vehicle by comparing it with the database of the registered vehicle in the area. The device will consist of a camera which will take the real time footage of the vehicles and a snap from the video of the vehicle is used to recognize the number plate. The processor will process the images and will display the number of the vehicle and the owner of the vehicle in the display, this is achieved by comparing the number of the vehicle with the previously fed data from the database. This device will provide an efficient way for automating a parking system where there will be no need for a human to interfere with the checking of the vehicle and providing passes for the vehicle.


Prospectiva ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 41-48
Author(s):  
Betsy Villa ◽  
Valeria Valencia ◽  
Julie Berrio

El lenguaje de señas es el autóctono, utilizado por las personas sordas para comunicarse. Se compone de movimientos y expresiones realizadas a través de diferentes partes del cuerpo. En Colombia, hay gran ausencia de tecnologías encaminadas al aprendizaje e interpretación de éste; por ende, es un compromiso social, llevar a cabo iniciativas que promuevan la mejora de la calidad de vida de este grupo social del país, el cual está representado por una minoría considerable. En este artículo, se muestra el proceso de diseño e implementación de un sistema de reconocimiento de gestos no móviles mediante el entorno de Matlab y el método SIFT; a través del cual se visualiza la imagen de la letra adquirida, junto con la traducción de la misma en el lenguaje de señas colombiano, aplicando identificación de puntos claves y comparación con imágenes almacenadas en base de datos. La herramienta realiza el reconocimiento de las 20 letras no móviles de este conjunto, implementando una interfaz gráfica en Matlab para una mejor visualización, fácil acceso al sistema y uso por parte del usuario. Se comprueba una mejor respuesta del sistema mediante la utilización de un elemento estandarizado de la imagen, en este caso, un guante quirúrgico, y se propone la mejora de la herramienta aplicando métodos de redes neuronales para que posteriormente pueda ser desarrollada de forma online; generando un mayor impacto para las necesidades actuales de la población colombiana.


2014 ◽  
Vol 543-547 ◽  
pp. 2678-2680 ◽  
Author(s):  
Xiu Hua Teng

Image processing-based vehicle recognition is one of the important research fields in ITS. The existing methods are all based on license plate recognition and car shape recognition. Their common problem is algorithm stability. And the license plates are easy to be changed. All information about vehicles should be used to recognize them reliably. A problem to be solved is to find a method to recognize vehicles besides license plate recognition and vehicle model recognition. Vehicle license plate location and character segmentation are critical steps in the license plate recognition system, and yet there are difficult problems to be solved. Kernel density estimation and Mean Shift theory


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaochen Tang ◽  
Yunbo An ◽  
Congshan Li

With the development of digital image technology, judging diseases by medical image plays an important role in medical diagnosis. Mammography is the most effective imaging examination method for breast cancer at present. Intelligent segmentation and identification of breast cancer images and judging their size and classification by digital image processing technology can promote the development of clinical medicine. This paper introduces the preprocessing technology of breast cancer pathological image and medical image recognition technology of breast cancer. In order to improve the segmentation accuracy of image processing and optimize, the segmentation recognition ability in digital mammography was improved. Based on the technical basis of pathological image analysis of breast cancer, the architecture of intelligent segmentation and recognition system for breast cancer was constructed, and each functional module of intelligent system was introduced in detail. Based on digital image processing technology, filtering technology is used to reduce dryness and improve the clarity of the image. Public datasets INBreast and DDSM-BCRP were used to verify system’s performance, and it was tested on the breast cancer image test set. The experiment shows that the comprehensive performance of the intelligent segmentation and recognition system can realize the segmentation and recognition of breast cancer and has higher accuracy and interpretability, which is helpful to improve the diagnosis of doctors.


Sign in / Sign up

Export Citation Format

Share Document