scholarly journals Thermal and catalytic pyrolysis of palm-pressed fibre (PPF) with copper oxide doped zirconia (CuO/ZrO2) catalyst in a fixed-bed reactor

Author(s):  
A R Mohamed ◽  
A N Awang ◽  
D M Hassan ◽  
N Nordin ◽  
R Ahmad
2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2013 ◽  
Vol 475-476 ◽  
pp. 1329-1333 ◽  
Author(s):  
Fen Li ◽  
Jin Wei ◽  
Ying Yang ◽  
Guang Hui Yang ◽  
Tao Lei

In this paper, an efficient metal oxide sorbents for the deep removal of H2S were synthesized using equal volume impregnation (EVIM) method. Modified coconut shell charcoal was selected as support to deposite the particles of copper oxide onto the surface. And copper nitrate were selected as the active component precursors in the preparation process of sorbents. Sorption experiments were carried out at room temperature in fixed-bed reactor. The grain size and crystal form of loading metals were characterized by X-ray diffraction (XRD). We investigated the effects of modifier onto coconut shell charcoal, load rate of metal oxide and calcination temperature on the desulfurization activity of the sorbent. Results show that the best modifier for coconut shell charcoal is KOH, which is significantly better than the other modifiers. And the optimum load rate is 20%(wt), the optimum calcination temperature is 300°C. Copper oxide onto the surface of modified coconut shell charcoal proved to be monoclinic nanoparticles with grain size of 18.7nm. Sulfidation test was carried out on the condition of i) the concentration of hydrogen sulfide gas (mixed with nitrogen ) is 1024.2ppm and ii) gas velocity is 20ml/min, iii) 0.1g sample in the middle of the fixed-bed reactor (length: 450 mm, interior diameter: 5 mm) to test. The sample show excellent sulfur removal efficiency and its breakthrough time is up to 287 min on this condition.


2015 ◽  
Vol 787 ◽  
pp. 67-71
Author(s):  
R.M. Alagu ◽  
E. Ganapathy Sundaram

Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.


2014 ◽  
Vol 39 (25) ◽  
pp. 13128-13135 ◽  
Author(s):  
Shaomin Liu ◽  
Jinglin Zhu ◽  
Mingqiang Chen ◽  
Wenping Xin ◽  
Zhonglian Yang ◽  
...  

Author(s):  
Ehsan Kianfar ◽  
Mahmoud Salimi ◽  
Saeed Hajimirzaee ◽  
Behnam Koohestani

Abstract In this research, the catalytic conversion of methanol to gasoline range hydrocarbons has been studied over CuO (5 %)/ZSM-5 and CuO (7 %)/ZSM-5 catalysts prepared via sonochemistry methods. Conversion of methanol to gasoline (MTG) has been carried out in a fixed bed reactor under atmospheric pressure and 400˚C temperature, over copper oxide on the synthesized ZSM-5 catalyst. The samples were characterized by XRD, SEM, TEM, BET, and FTIR techniques; in which good crystallinity and high specific surface area of synthesized zeolite were proved after impregnation of zeolite with copper. The present investigation suggests that the CuO/ZSM-5 catalyst made by sonochemistry method can increase the yield toward hydrocarbon production. It was concluded that impregnation of zeolite with copper oxide can alter the Brønsted/Lewis acid sites ratio and provide new Lewis acid sites over the surface of the ZSM-5. The main products of methanol to gasoline reaction over the catalyst that prepared via sonochemistry method were toluene, xylene, ethylbenzene, ethyl toluene, tetra methylbenzene, diethyl benzene and butylbenzene. The total amount of aromatics in the products was 80 % by using this catalyst. Our results suggest that catalyst synthesized by using sonochemistry shows better production yield toward hydrocarbons by affecting the distribution of active sites on the surface of the ZSM-5.


Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


2016 ◽  
Vol 38 (13-14) ◽  
pp. 1660-1672 ◽  
Author(s):  
S. Vichaphund ◽  
V. Sricharoenchaikul ◽  
D. Atong

Sign in / Sign up

Export Citation Format

Share Document