Microbial contamination of libraries and archives: risk assessment and contamination control

Author(s):  
F Bosco ◽  
M Demichela ◽  
A A Barresi ◽  
D Fissore
Author(s):  
Monika Bhardwaj ◽  
Neeraj Masand ◽  
Jagannath Sahoo ◽  
Vaishali M. Patil

Cosmetic manufacturers need to demonstrate the safety and efficacy of the products against microbial contamination to assure consumer safety and to improve shelf-life. The preservation strategies include chemical, physical, or physiological strategies. The most common is the use of antimicrobial agents. The toxicity assessment of preservatives used in cosmetic products is essential. It can be done by computational methods such as quantitative structure-activity relationship (QSAR) using several software such as ADME-Tox, TOPKAT, Dragon, T.E.S.T., and ECOSAR. The present manuscript elaborates a detailed view on cosmetic preservatives, regulatory aspects and application of computational strategies for toxicity prediction.


Author(s):  
Francesco Romano ◽  
Samanta Milani ◽  
Roberto Ricci ◽  
Cesare Maria Joppolo

In Operating Theatres (OT), the ventilation system plays an important role in controlling airborne contamination and reducing the risks of Surgical Site Infections (SSIs). The air cleanliness is really crucial in this field and different measurements are used in order to characterize the situation in terms of both airborne microbiological pollutants and particle size and concentration. Although the ventilation systems and airborne contamination are strictly linked, different air diffusion schemes (in particular, the Partial Unidirectional Airflow, P-UDAF, and the Mixing Airflow, MAF) and various design parameters are used, and there is still no consensus on real performance and optimum solutions. This study presents measurements procedures and results obtained during Inspection and Periodic Performance Testing (1228 observations) in a large sample of Italian OTs (175 OTs in 31 Italian hospitals) in their operative life (period from 2010 to 2018). The inspections were made after a cleaning procedure, both in “at-rest” conditions and “in operation” state. Inert and microbial contamination data (in air and on surfaces) are analyzed and commented according to four relevant air diffusion schemes and design classes. Related data on Recovery Time (RT) and personnel presence were picked up and are commented. The results confirm that the ventilation systems are able to maintain the targeted performance levels in the OT operative life. However, they attest that significant differences in real OT contamination control capabilities do exist and could be ascribed to various design choices and to different operation and maintenance practices. The study shows and confirms that the air diffusion scheme and the design airflow rate are critical factors. Beside large variations in measurements, the performance values, in terms of control of airborne particle and microbial contamination (in air and on surfaces), for P-UDAF systems are better than those that were assessed for the MAF air diffusion solution. The average performances do increase with increasing airflows, and the results offer a better insight on this relationship leading to some possible optimization.


2016 ◽  
Vol 74 (3) ◽  
pp. 749-755 ◽  
Author(s):  
P. Makkaew ◽  
M. Miller ◽  
H. J. Fallowfield ◽  
N. J. Cromar

This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Farah Ejaz ◽  
Muhammad Farrakh Nawaz ◽  
Zulfiqar Ahmad Dasti ◽  
Sadaf Gul ◽  
Umer Islam ◽  
...  

1998 ◽  
Vol 61 (5) ◽  
pp. 640-648 ◽  
Author(s):  
DAVID JOHN VOSE

Quantitative risk assessment (QRA) is rapidly accumulating recognition as the most practical method for assessing the risks associated with microbial contamination of foodstuffs. These risk analyses are most commonly developed in commercial Computer spreadsheet applications, combined with Monte Carlo simulation add-ins that enable probability distributions to be inserted into a spreadsheet. If a suitable model structure can be defined and all of the variables within that model reasonably quantified, a QRA will demonstrate the sensitivity of the severity of the risk to each stage in the risk-assessment model. It can therefore provide guidance for the selection of appropriate risk-reduction measures and a quantitative assessment of the benefits and costs of these proposed measures. However, very few reports explaining QRA models have been submitted for publication in this area. There is, therefore, little guidance available to those who intend to embark on a full microbial QRA. This paper looks at a number of modeling techniques that can help produce more realistic and accurate Monte Carlo simulation models. The use and limitations of several distributions important to microbial risk assessment are explained. Some simple techniques specific to Monte Carlo simulation modelling of microbial risks using spreadsheets are also offered which will help the analyst more realistically reflect the uncertain nature of the scenarios being modeled. simulation, food safety


Sign in / Sign up

Export Citation Format

Share Document