Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink

2021 ◽  
Author(s):  
Kaidong Song ◽  
Bing Ren ◽  
Yingnan Zhai ◽  
Wenxuan Chai ◽  
Yong Huang

Abstract Three-dimensional (3D) bioprinting has emerged as a powerful engineering approach for various tissue engineering applications, particularly for the development of 3D cellular structures with unique mechanical and/or biological properties. For the jammed gelatin microgel-gelatin solution composite bioink, comprising a discrete phase of microgels (enzymatically gelled gelatin microgels) and a cross-linkable continuous gelatin precursor solution-based phase containing transglutaminase (TG), its rheology properties and printability change gradually due to the TG enzyme-induced cross-linking process. The objective of this study is to establish a direct mapping between the printability of the gelatin microgel-gelatin solution based cross-linkable composite bioink and the TG concentration and cross-linking time, respectively. Due to the inclusion of TG in the composite bioink, the bioink starts cross-linking once prepared and is usually prepared right before a printing process. Herein, the bioink printability is evaluated based on the three metrics: injectability, feature formability, and process-induced cell injury. In this study, the rheology properties such as the storage modulus and viscosity have been first systematically investigated and predicted at different TG concentrations and times during the cross-linking process using the first-order cross-linking kinetics model. The storage modulus and viscosity have been satisfactorily modeled as exponential functions of the TG concentration and time with an experimentally calibrated cross-linking kinetic rate constant. Furthermore, the injectability, feature formability, and process-induced cell injury have been successfully correlated to the TG concentration and cross-linking time via the storage modulus, viscosity, and/or process-induced shear stress. By combing the good injectability, good feature formability, and satisfactory cell viability zones, a good printability zone (1.65, 0.61, and 0.31 hours for the composite bioinks with 1.00, 2.00, and 4.00% w/v TG, respectively) has been established during the printing of mouse fibroblast-based 2% gelatin B microgel-3% gelatin B solution composite bioink. This printability zone approach can be extended to the use of other cross-linkable bioinks for bioprinting applications.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1105
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ângela Carvalho ◽  
Fernando J. Monteiro

Blending of different biopolymers, e.g., collagen, chitosan, silk fibroin and cross-linking modifications of these mixtures can lead to new materials with improved physico-chemical properties, compared to single-component scaffolds. Three-dimensional scaffolds based on three-component mixtures of silk fibroin, collagen and chitosan, chemically cross-linked, were prepared and their physico-chemical and biological properties were evaluated. A mixture of EDC (N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) was used as a cross-linking agent. FTIR was used to observe the position of the peaks characteristic for collagen, chitosan and silk fibroin. The following properties depending on the scaffold structure were studied: swelling behavior, liquid uptake, moisture content, porosity, density, and mechanical parameters. Scanning Electron Microscopy imaging was performed. Additionally, the biological properties of these materials were assessed, by metabolic activity assay. The results showed that the three-component mixtures, cross-linked by EDC/NHS and prepared by lyophilization method, presented porous structures. They were characterized by a high swelling degree. The composition of scaffolds has an influence on mechanical properties. All of the studied materials were cytocompatible with MG-63 osteoblast-like cells.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3577 ◽  
Author(s):  
Ilaria Silvestro ◽  
Iolanda Francolini ◽  
Valerio Di Lisio ◽  
Andrea Martinelli ◽  
Loris Pietrelli ◽  
...  

Scaffolds are three-dimensional porous structures that must have specific requirements to be applied in tissue engineering. Therefore, the study of factors affecting scaffold performance is of great importance. In this work, the optimal conditions for cross-linking preformed chitosan (CS) scaffolds by the tripolyphosphate polyanion (TPP) were investigated. The effect on scaffold physico-chemical properties of different concentrations of chitosan (1 and 2% w/v) and tripolyphosphate (1 and 2% w/v) as well as of cross-linking reaction times (2, 4, or 8 h) were studied. It was evidenced that a low CS concentration favored the formation of three-dimensional porous structures with a good pore interconnection while the use of more severe conditions in the cross-linking reaction (high TPP concentration and crosslinking reaction time) led to scaffolds with a suitable pore homogeneity, thermal stability, swelling behavior, and mechanical properties, but having a low pore interconnectivity. Preliminary biocompatibility tests showed a good osteoblasts’ viability when cultured on the scaffold obtained by CS 1%, TPP 1%, and an 8-h crosslinking time. These findings suggest how modulation of scaffold cross-linking conditions may permit to obtain chitosan scaffold with properly tuned morphological, mechanical and biological properties for application in the tissue regeneration field.


Author(s):  
Chih-Yuan Su ◽  
Gou-Jen Wang

In this study, a three-dimensional bioscaffold printer was developed to fabricate biocompatible scaffolds from water-soluble materials for application in cell studies. A gelatin/sodium alginate solution was used to produce the scaffolds via a fused deposition modelling (FDM) printing method using the modified 3D printer. Modifications and improvements to the material feeding system, printing head, and printing platform were made, with additional optimization of the printing parameters, such as the feed rate, printing rate, and printing head size to investigate the precision and accuracy of two-dimensional and 3D bioscaffold printing. In addition to modifications of the feeding system from the original solid to the new liquid state material, a heating probe and coil were added to maintain the liquid phase. The printing nozzle was also altered to allow for the feed material and a cross-linking agent to mix prior to printing; enabling cross-linked scaffolds to be produced. Furthermore, the printing surface was integrated with a filter to allow for excess fluid to drain from the scaffold after printing and cross-linking. The results of this study revealed that the optimal printing parameters for producing a 2D 15.3 mm × 15.3 mm square was with a printing head-platform distance of 4 mm, material feed rate of 5 mL/min, printing rate of 35 mm/s and a printing head diameter of 0.4 mm. In addition, it was found that the printing speed and the printed image size and resolution are correlated, as such, the smallest dimensions able to be printed is 10.3 mm × 10.3 mm, with a line width of 1 mm. In regards to 3D scaffolds, the printed scaffolds had dimensions of 20 mm × 20.15 mm with a height of 7.5 mm; which were found to support the growth of mouse fibroblast cells.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Sonia Trombino ◽  
Federica Curcio ◽  
Roberta Cassano ◽  
Manuela Curcio ◽  
Giuseppe Cirillo ◽  
...  

Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4445
Author(s):  
Tiphaine Wong ◽  
Lorette Brault ◽  
Eric Gasparotto ◽  
Romuald Vallée ◽  
Pierre-Yves Morvan ◽  
...  

Marine polysaccharides are part of the huge seaweeds resources and present many applications for several industries. In order to widen their potential as additives or bioactive compounds, some structural modifications have been studied. Among them, simple hydrophobization reactions have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physicochemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food fields. This review covers the chemical structures of the main marine polysaccharides, and then focuses on their structural modifications, and especially on hydrophobization reactions mainly esterification, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine, or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable processes around these structural modulations of marine polysaccharides is addressed, considering the development of greener technologies applied to traditional polysaccharides.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kieran Joyce ◽  
Georgina Targa Fabra ◽  
Yagmur Bozkurt ◽  
Abhay Pandit

AbstractBiomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.


2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


Author(s):  
Matthew N. Rush ◽  
Christina Salas ◽  
Lorraine Mottishaw ◽  
Damian Fountain ◽  
Deana Mercer

Abstract Background Ligament reconstruction, as a surgical method used to stabilize joints, requires significant strength and tissue anchoring to restore function. Historically, reconstructive materials have been fraught with problems from an inability to withstand normal physiological loads to difficulties in fabricating the complex organization structure of native tissue at the ligament-to-bone interface. In combination, these factors have prevented the successful realization of nonautograft reconstruction. Methods A review of recent improvements in additive manufacturing techniques and biomaterials highlight possible options for ligament replacement. Description of Technique In combination, three dimensional-printing and electrospinning have begun to provide for nonautograft options that can meet the physiological load and architectures of native tissues; however, a combination of manufacturing methods is needed to allow for bone-ligament enthesis. Hybrid biofabrication of bone-ligament tissue scaffolds, through the simultaneous deposition of disparate materials, offer significant advantages over fused manufacturing methods which lack efficient integration between bone and ligament materials. Results In this review, we discuss the important chemical and biological properties of ligament enthesis and describe recent advancements in additive manufacturing to meet mechanical and biological requirements for a successful bone–ligament–bone interface. Conclusions With continued advancement of additive manufacturing technologies and improved biomaterial properties, tissue engineered bone-ligament scaffolds may soon enter the clinical realm.


Sign in / Sign up

Export Citation Format

Share Document