scholarly journals 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink

2021 ◽  
Author(s):  
Meik Neufurth ◽  
Shunfeng Wang ◽  
Heinz C. Schröder ◽  
Bilal Al-Nawas ◽  
Xiaohong Wang ◽  
...  

Abstract The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the migration propensity of mesenchymal stem cells (MSC). In addition, this ink stimulates not only the growth but also the differentiation of MSC to mineral depositing osteoblasts. Furthermore, the growth/aggregate pattern of MSC changes from isolated cells to globular spheres, if embedded in the polyP bio-ink. The morphogenetic activity of the MSC exposed to polyP in the bio-ink is corroborated by qRT-PCR data, which show a strong induction of the steady-state-expression of alkaline phosphatase, connected with a distinct increase in the expression ratio between RUNX2 and Sox2. We propose that polyP should become an essential component in bio-inks for the printing of cells that retain their regenerative activity.

2021 ◽  
pp. 039139882098680
Author(s):  
Xuefeng Zhang ◽  
Nan Wang ◽  
Yuhua Huang ◽  
Yan Li ◽  
Gang Li ◽  
...  

Background: Three-dimensional (3D) culture has been reported to increase the therapeutic potential of mesenchymal stem cells (MSCs). The present study assessed the therapeutic efficacy of extracellular vesicles (EVs) from 3D cultures of human placental MSCs (hPMSCs) for acute kidney injury (AKI). Methods: The supernatants from monolayer culture (2D) and 3D culture of hPMSCs were ultra-centrifuged for EVs isolation. C57BL/6 male mice were submitted to 45 min bilateral ischemia of kidney, followed by renal intra-capsular administration of EVs within a 72 h reperfusion period. Histological, immunohistochemical, and ELISA analyses of kidney samples were performed to evaluate cell death and inflammation. Kidney function was evaluated by measuring serum creatinine and urea nitrogen. The miRNA expression profiles of EVs from 2D and 3D culture of hPMSCs were evaluated using miRNA microarray analysis. Results: The 3D culture of hPMSCs formed spheroids with different diameters depending on the cell density seeded. The hPMSCs produced significantly more EVs in 3D culture than in 2D culture. More importantly, injection of EVs from 3D culture of hPMSCs into mouse kidney with ischemia-reperfusion (I/R)-AKI was more beneficial in protecting from progression of I/R than those from 2D culture. The EVs from 3D culture of hPMSCs were more efficient against apoptosis and inflammation than those from 2D culture, which resulted in a reduction in tissue damage and amelioration of renal function. MicroRNA profiling analysis revealed that a set of microRNAs were significantly changed in EVs from 3D culture of hPMSCs, especially miR-93-5p. Conclusion: The EVs from 3D culture of hPMSCs have therapeutic potential for I/R-AKI.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sevda Pouraghaei Sevari ◽  
Sahar Ansari ◽  
Alireza Moshaverinia

AbstractTissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nurul Dinah Kadir ◽  
Zheng Yang ◽  
Afizah Hassan ◽  
Vinitha Denslin ◽  
Eng Hin Lee

Abstract Background Secretome profiles of mesenchymal stem cells (MSCs) are reflective of their local microenvironments. These biologically active factors exert an impact on the surrounding cells, eliciting regenerative responses that create an opportunity for exploiting MSCs towards a cell-free therapy for cartilage regeneration. The conventional method of culturing MSCs on a tissue culture plate (TCP) does not provide the physiological microenvironment for optimum secretome production. In this study, we explored the potential of electrospun fiber sheets with specific orientation in influencing the MSC secretome production and its therapeutic value in repairing cartilage. Methods Conditioned media (CM) were generated from MSCs cultured either on TCP or electrospun fiber sheets of distinct aligned or random fiber orientation. The paracrine potential of CM in affecting chondrogenic differentiation, migration, proliferation, inflammatory modulation, and survival of MSCs and chondrocytes was assessed. The involvement of FAK and ERK mechanotransduction pathways in modulating MSC secretome were also investigated. Results We showed that conditioned media of MSCs cultured on electrospun fiber sheets compared to that generated from TCP have improved secretome yield and profile, which enhanced the migration and proliferation of MSCs and chondrocytes, promoted MSC chondrogenesis, mitigated inflammation in both MSCs and chondrocytes, as well as protected chondrocytes from apoptosis. Amongst the fiber sheet-generated CM, aligned fiber-generated CM (ACM) was better at promoting cell proliferation and augmenting MSC chondrogenesis, while randomly oriented fiber-generated CM (RCM) was more efficient in mitigating the inflammation assault. FAK and ERK signalings were shown to participate in the modulation of MSC morphology and its secretome production. Conclusions This study demonstrates topographical-dependent MSC paracrine activities and the potential of employing electrospun fiber sheets to improve the MSC secretome for cartilage regeneration.


2011 ◽  
Vol 8 (60) ◽  
pp. 998-1010 ◽  
Author(s):  
Jae Ho Lee ◽  
Hye-Sun Yu ◽  
Gil-Su Lee ◽  
Aeri Ji ◽  
Jung Keun Hyun ◽  
...  

Three-dimensional gel matrices provide specialized microenvironments that mimic native tissues and enable stem cells to grow and differentiate into specific cell types. Here, we show that collagen three-dimensional gel matrices prepared in combination with adhesive proteins, such as fibronectin (FN) and laminin (LN), provide significant cues to the differentiation into neuronal lineage of mesenchymal stem cells (MSCs) derived from rat bone marrow. When cultured within either a three-dimensional collagen gel alone or one containing either FN or LN, and free of nerve growth factor (NGF), the MSCs showed the development of numerous neurite outgrowths. These were, however, not readily observed in two-dimensional culture without the use of NGF. Immunofluorescence staining, western blot and fluorescence-activated cell sorting analyses demonstrated that a large population of cells was positive for NeuN and glial fibrillary acidic protein, which are specific to neuronal cells, when cultured in the three-dimensional collagen gel. The dependence of the neuronal differentiation of MSCs on the adhesive proteins containing three-dimensional gel matrices is considered to be closely related to focal adhesion kinase (FAK) activation through integrin receptor binding, as revealed by an experiment showing no neuronal outgrowth in the FAK-knockdown cells and stimulation of integrin β1 gene. The results provided herein suggest the potential role of three-dimensional collagen-based gel matrices combined with adhesive proteins in the neuronal differentiation of MSCs, even without the use of chemical differentiation factors. Furthermore, these findings suggest that three-dimensional gel matrices might be useful as nerve-regenerative scaffolds.


2010 ◽  
Vol 29 (8) ◽  
pp. 668-677 ◽  
Author(s):  
Zoher Kapacee ◽  
Ching-Yan Chloé Yeung ◽  
Yinhui Lu ◽  
David Crabtree ◽  
David F. Holmes ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuejiao Li ◽  
Yankai Dong ◽  
Ye Ran ◽  
Yanan Zhang ◽  
Boyao Wu ◽  
...  

Abstract Background We show previously that three-dimensional (3D) spheroid cultured mesenchymal stem cells (MSCs) exhibit reduced cell size thus devoid of lung entrapment following intravenous (IV) infusion. In this study, we determined the therapeutic effect of 3D-cultured MSCs on ischemic stroke and investigated the mechanisms involved. Methods Rats underwent middle cerebral artery occlusion (MCAO) and reperfusion. 1 × 106 of 3D- or 2D-cultured MSCs, which were pre-labeled with GFP, were injected through the tail vain three and seven days after MCAO. Two days after infusion, MSC engraftment into the ischemic brain tissues was assessed by histological analysis for GFP-expressing cells, and infarct volume was determined by MRI. Microglia in the lesion were sorted and subjected to gene expressional analysis by RNA-seq. Results We found that infusion of 3D-cultured MSCs significantly reduced the infarct volume of the brain with increased engraftment of the cells into the ischemic tissue, compared to 2D-cultured MSCs. Accordingly, in the brain lesion of 3D MSC-treated animals, there were significantly reduced numbers of amoeboid microglia and decreased levels of proinflammatory cytokines, indicating attenuated activation of the microglia. RNA-seq of microglia derived from the lesions suggested that 3D-cultured MSCs decreased the response of microglia to the ischemic insult. Interestingly, we observed a decreased expression of mincle, a damage-associated molecular patterns (DAMPs) receptor, which induces the production of proinflammatory cytokines, suggestive of a potential mechanism in 3D MSC-mediated enhanced repair to ischemic stroke. Conclusions Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation.


Sign in / Sign up

Export Citation Format

Share Document