scholarly journals Simple method for making MWCNTs/Au-NPs-based biosensor electrodes

Author(s):  
Agus Subagio ◽  
Heydar Ruffa Taufiq ◽  
Ali Khumaeni ◽  
Ngurah Ayu Ketut Umiati ◽  
Kusworo Adi

Abstract Multiwalled carbon nanotubes have great potential when applied as biosensors. Their properties, especially as electrodes with electrochemical characteristics, offer strong benefits for developing biosensors. This research has been able to integrate multiwalled carbon nanotubes (MWCNTs) with Au nanoparticles (Au-NPs) to obtain several new superior properties. Cysteaminium chloride is used to link MWCNTs and Au-NPs while binding to specific antibodies to make them more sensitive to some diseases or viruses. The data on the success of the bonding of MWCNTs/Au-NPs were tested using three characterizations, namely FTIR, SEM, and XRD. Based on the results of testing electrochemical properties using the CV and EIS tests, the capacitance value of 6,363 Fg-1 and the Rct value of 717,9 Ω, respectively. This demonstrates good adhesion and electron transfer properties from the electrolyte to the probe and electrode.

2011 ◽  
Vol 194-196 ◽  
pp. 618-624 ◽  
Author(s):  
Kim Han Tan ◽  
Bey Fen Leo ◽  
Meng Nee Ng ◽  
Roslina Ahmad ◽  
Mohd Rafie Johan

Multiwalled carbon nanotubes (MWCNTs) have been successfully synthesized by using a relatively simple method, known as modified Wolff-Kishner reduction process. Transmission electron microscopy (TEM) has shown the as-prepared MWCNTs possess straight morphologies with average inner and outer diameters, between 2 to 7 nm and 5 to 15 nm, respectively. Ultraviolet-visible (UV-Vis) absorption measurement has been conducted for the first time. The correlation between energy of the π plasmon absorbance (Eπ) and nanotube diameter (dCNT) for the as-prepared MWCNTs shows contradiction to the empirical relationship as Eπ = 4.8 + 0.7 / (dCNT)2. Other optical characteristics like transmittance, reflectance and refraction index also have been studied. This work explores the optical property of the as-prepared MWCNTs and thus provides better understanding about the feasibility of this synthesis technique.


2018 ◽  
Vol 929 ◽  
pp. 150-157
Author(s):  
Alfian Ferdiansyah Madsuha ◽  
Nofrijon Sofyan ◽  
Akhmad Herman Yuwono ◽  
Michael Krueger

In this work, the development of solution-processed bulk heterojunction hybrid solar cells based on CdSe quantum dot (QD) and conjugated polymer poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b] dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)], PCPDTBT was performed. The photoactive layer was formed by integrating CdSe QDs onto multiwalled carbon nanotubes (CNTs). A simple method of thiol functionalization in the interface CNTs and CdSe QDs has been investigated. Integration of CNTs enhances long-term performance of solar cells devices. Initial PCE values of about 1.9 % under AM1.5G illumination have been achieved for this hybrid CNT-CdSe photovoltaic device. In addition, the long-term stability of the photovoltaic performance of the devices was investigated and found superior to CdSe QD only based devices. About 84 % of the initial PCE remained after storage in a glove box for one year without any further encapsulation. It is concluded that the improvement is mainly due to a strong binding between thiol functionalized CNTs and CdSe QDs, resulting preservation of the nanomorphology of the hybrid film over time.


The Analyst ◽  
2012 ◽  
Vol 137 (21) ◽  
pp. 5113 ◽  
Author(s):  
Nidhi Chauhan ◽  
Anamika Singh ◽  
Jagriti Narang ◽  
Swati Dahiya ◽  
C. S. Pundir

2018 ◽  
Vol 20 (2) ◽  
pp. 71-79
Author(s):  
Krzysztof Cendrowski ◽  
Magdalena Jedrzejczak-Silicka

Abstract Multiwalled carbon nanotubes (MWCNTs) have attracted huge attention due to their multifunctionality. Their unique properties allows for covalent and noncovalent modifications. The most simple method for functionalization of carbon nanotubes is their decoration with the oxygen containing moieties which can be further simultaneously functionalized for design of new class carriers for targeting and imaging. Here, we present methodology for chopping nanotubes, characterization of MWCNTs, the effect of size on the biocompatibility in culture of L929 mouse fibroblasts using WST-1, LDH and apoptosis assays. The analysis provides the optimal carbon nanotubes length and concentration which can be used for functionalization in order to minimize the effect of the secondary agglomeration when interacting with cells.


Sign in / Sign up

Export Citation Format

Share Document