scholarly journals General overestimation of ERA5 precipitation in flow simulations for High Mountain Asia basins

Author(s):  
He Sun ◽  
Fengge Su ◽  
Tandong Yao ◽  
Zhihua He ◽  
Guoqiang Tang ◽  
...  

Abstract Precipitation is one of the most important input to hydrological models, although obtaining sufficient precipitation observations and accurate precipitation estimates in High Mountain Asia (HMA) is challenging. ERA5 precipitation is the latest generation of reanalysis dataset that is attracting huge attention from various fields but it has not been evaluated in hydrological simulations in HMA. To remedy this gap, we first statistically evaluated ERA5 precipitation with observations from 584 gauges in HMA, and then investigated its potential in hydrological simulation in 11 HMA basins using the Variable Infiltration Capacity (VIC) hydrological model. The ERA5 precipitation generally captures the seasonal variations of gauge observations, and the broad spatial distributions of precipitation in both magnitude and trends in HMA. The ERA5 exhibits a reasonable flow simulation (RB of 5%–10%) at the Besham hydrological station of the UI basin when the contribution from glacier runoff is added to the simulated total runoff. But it overestimates the observations in other HMA basins by 33%–106% without considering glacier runoff, mostly due to the overestimates in the ERA5 precipitation inputs. Therefore, a bias correction is definitely needed before ERA5 precipitation is used for hydrological simulations in HMA basins.

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 118
Author(s):  
Kseniia Kuzmina ◽  
Ilia Marchevsky ◽  
Irina Soldatova ◽  
Yulia Izmailova

The possibilities of applying the pure Lagrangian vortex methods of computational fluid dynamics to viscous incompressible flow simulations are considered in relation to various problem formulations. The modification of vortex methods—the Viscous Vortex Domain method—is used which is implemented in the VM2D code developed by the authors. Problems of flow simulation around airfoils with different shapes at various Reynolds numbers are considered: the Blasius problem, the flow around circular cylinders at different Reynolds numbers, the flow around a wing airfoil at the Reynolds numbers 104 and 105, the flow around two closely spaced circular cylinders and the flow around rectangular airfoils with a different chord to the thickness ratio. In addition, the problem of the internal flow modeling in the channel with a backward-facing step is considered. To store the results of the calculations, the POD technique is used, which, in addition, allows one to investigate the structure of the flow and obtain some additional information about the properties of flow regimes.


2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Mohammad Ilyas Abro ◽  
Dehua Zhu ◽  
Ehsan Elahi ◽  
Asghar Ali Majidano ◽  
Bhai Khan Solangi

Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 57 ◽  
Author(s):  
Debjani Ghatak ◽  
Benjamin Zaitchik ◽  
Sujay Kumar ◽  
Mir A. Matin ◽  
Birendra Bajracharya ◽  
...  

: Accurate meteorological estimates are critical for process-based hydrological simulation and prediction. This presents a significant challenge in mountainous Asia where in situ meteorological stations are limited and major river basins cross international borders. In this context, remotely sensed and model-derived meteorological estimates are often necessary inputs for distributed hydrological analysis. However, these datasets are difficult to evaluate on account of limited access to ground data. In this case, the implications of uncertainty associated with precipitation forcing for hydrological simulations is explored by driving the South Asia Land Data Assimilation System (South Asia LDAS) using a range of meteorological forcing products. MERRA2, GDAS, and CHIRPS produce a wide range of estimates for rainfall, which causes a widespread simulated streamflow and evapotranspiration. A combination of satellite-derived and limited in situ data are applied to evaluate model simulations and, by extension, to constrain the estimates of precipitation. The results show that available gridded precipitation estimates based on in situ data may systematically underestimate precipitation in mountainous regions and that performance of gridded satellite-derived or modeled precipitation estimates varies systematically across the region. Since no station-based data or product including station data is satisfactory everywhere, our results suggest that the evaluation of the hydrological simulation of streamflow and ET can be used as an indirect evaluation of precipitation forcing based on ground-based products or in-situ data. South Asia LDAS produces reasonable evapotranspiration and streamflow when forced with appropriate meteorological forcing and the choice of meteorological forcing should be made based on the geographical location as well as on the purpose of the simulations.


1999 ◽  
Author(s):  
Mario Caponnetto ◽  
Alessandro Castelli ◽  
Philippe Dupont ◽  
Bernard Bonjour ◽  
Pierre-Louis Mathey ◽  
...  

The 30th America's Cup will be held in New Zealand, commencing in October 1999. For the first time a Swiss team, the FAST2000 Challenge of the Club Nautique Morgien, will compete. Three laboratories of the EPFL (Ecole Polytechnique Federale de Lausanne) are collaborating with FAST2000 in the design of the boat that will race in the Cup challenges. Present-day design of IACC racing yachts relies on the use of numerical flow simulations to obtain a competitive edge. The computation of the complex hydrodynamic and aerodynamic flows around sailing yachts provides valuable information to supplement the more conventional empirical and experimental design techniques. Such flow simulations, however, are extremely challenging and thus often require state­of-the-art numerical techniques and computer technology. A number of the issues critical to IACC yacht design are discussed, and various approaches described to address them through the use of advanced numerical flow simulation.


SPE Journal ◽  
2021 ◽  
pp. 1-25
Author(s):  
Chang Gao ◽  
Juliana Y. Leung

Summary The steam-assisted gravity drainage (SAGD) recovery process is strongly impacted by the spatial distributions of heterogeneous shale barriers. Though detailed compositional flow simulators are available for SAGD recovery performance evaluation, the simulation process is usually quite computationally demanding, rendering their use over a large number of reservoir models for assessing the impacts of heterogeneity (uncertainties) to be impractical. In recent years, data-driven proxies have been widely proposed to reduce the computational effort; nevertheless, the proxy must be trained using a large data set consisting of many flow simulation cases that are ideally spanning the model parameter spaces. The question remains: is there a more efficient way to screen a large number of heterogeneous SAGD models? Such techniques could help to construct a training data set with less redundancy; they can also be used to quickly identify a subset of heterogeneous models for detailed flow simulation. In this work, we formulated two particular distance measures, flow-based and static-based, to quantify the similarity among a set of 3D heterogeneous SAGD models. First, to formulate the flow-based distance measure, a physics-basedparticle-tracking model is used: Darcy’s law and energy balance are integrated to mimic the steam chamber expansion process; steam particles that are located at the edge of the chamber would release their energy to the surrounding cold bitumen, while detailed fluid displacements are not explicitly simulated. The steam chamber evolution is modeled, and a flow-based distance between two given reservoir models is defined as the difference in their chamber sizes over time. Second, to formulate the static-based distance, the Hausdorff distance (Hausdorff 1914) is used: it is often used in image processing to compare two images according to their corresponding spatial arrangement and shapes of various objects. A suite of 3D models is constructed using representative petrophysical properties and operating constraints extracted from several pads in Suncor Energy’s Firebag project. The computed distance measures are used to partition the models into different groups. To establish a baseline for comparison, flow simulations are performed on these models to predict the actual chamber evolution and production profiles. The grouping results according to the proposed flow- and static-based distance measures match reasonably well to those obtained from detailed flow simulations. Significant improvement in computational efficiency is achieved with the proposed techniques. They can be used to efficiently screen a large number of reservoir models and facilitate the clustering of these models into groups with distinct shale heterogeneity characteristics. It presents a significant potential to be integrated with other data-driven approaches for reducing the computational load typically associated with detailed flow simulations involving multiple heterogeneous reservoir realizations.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1668
Author(s):  
Larissa Kogutenko ◽  
Igor Severskiy ◽  
Maria Shahgedanova ◽  
Bigzhang Lin

Change in glacier area in the Kuksu and Kunes river basins, which are tributaries to the internationally important Ile River, were assessed at two different time steps between 1962/63, 1990/93, and 2010/12. Overall, glaciers lost 191.3 ± 16.8 km2 or 36.9 ± 6.5% of the initial area. Glacier wastage intensified in the latter period: While in 1962/63–1990/93 glaciers were losing 0.5% a−1, in 1990/93–2010/12, they were losing 1.2% a−1. Streamflow of the Ile River and its tributaries do not exhibit statistically significant change during the vegetative period between May and September. Positive trends were observed in the Ile flow in autumn, winter, and early spring. By contrast, the calculation of the total runoff from the glacier surface (including snow and ice melt) using temperature-index method and runoff forming due to melting of multiyear ice estimated from changes in glacier volume at different time steps between the 1960s and 2010s, showed that their absolute values and their contribution to total river runoff declined since the 1980s. This change is attributed to a strong reduction in glacier area.


Author(s):  
Stefan Lietsch ◽  
Christoph Laroque ◽  
Henning Zabel

In this paper we present the integration of computational steering techniques into the interactive material flow simulation d3FACT insight. This kind of simulation differs from traditional, long running High Performance Computing (HPC) simulations such as Computational Fluid Dynamics (CFD) or Molecular Dynamics in many aspects. One very important aspect is that these simulations run in (soft) real-time, thus the corresponding visualization needs to be updated after every step of the simulation. In turn, this allows to let changes, made through the visualization, impact the actual simulation and again, to see the effects in visualization. To allow this kind of control over the simulation and to further provide a flexible basis to integrate several instances of simulation, visualization and steering components, we used and enhanced a self-developed computational steering platform, which fits best for the needs of highly interactive and distributed simulations. Thereby we are able to realize multi-user and comparative scenarios which were not possible in this field of simulations before.


2019 ◽  
Vol 51 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Yueguan Zhang ◽  
Zhenchun Hao ◽  
Chong-Yu Xu ◽  
Xide Lai

Abstract Located in the Tibetan Plateau, the upstream regions of the Mekong River (UM) and the Salween River (US) are very sensitive to climate change. The ‘VIC-glacier‘ model, which links a degree-day glacier algorithm with variable infiltration capacity (VIC) model, was employed and the model parameters were calibrated on observed streamflow, glacier mass balance and MODIS snowcover data. Results indicate that: (1) glacier-melt runoff exhibits a significant increase in both areas by the Mann–Kendall test. Snowmelt runoff shows an increasing trend in the UM, while the US is characterized by a decreasing tendency. In the UM, the snowmelt runoff peak shifts from June in the baseline period 1964–1990 to May for both the 1990s and 2000s; (2) rainfall runoff was considered as the first dominant factor driving changes of river discharge, which could be responsible for over 84% in total runoff trend over the two regions. The glacial runoff illustrates the secondary influence on the total runoff tendency; (3) although the hydrological regime is rain dominated in these two basins, the glacier compensation effect in these regions is obvious, especially in dry years.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1778 ◽  
Author(s):  
Xiaoning Li ◽  
Xing Fang ◽  
Yongwei Gong ◽  
Junqi Li ◽  
Jianlong Wang ◽  
...  

The two-dimensional overland flow simulation program, FullSWOF_2D, was revised to include submodules of determining infiltration by zones (Z) and grate-inlet (G) drainage from a 2D surface to a 1D pipe flow. The updated program, FullSWOF-ZG, was used to evaluate the performance of a road-bioretention strip (RBS) system and explore/understand key parameters of continuous RBS design. The program was validated using eight pervious surfaces under simulated rainfall events and tested with 20 experimental cases of a locally depressed curb inlet. The mean difference of simulated interception efficiencies (36.6%–86.0%) and observed interception efficiencies (34.8%–84.0%) of the curb inlet was 3.5%, which proves the program predicts the curb-inlet interception efficiency accurately. The 20 road-only and 20 RBS modeling cases were designed and modeled using the FullSWOF-ZG program. These case studies have different road lengths, curb inlet lengths, longitudinal slopes, cross slopes, bioretention-overflow inlet heights, and bioretention soil infiltration parameters. Only 34.6%–48.4% of the total runoff volume is intercepted by the RBS’s curb inlet under heavy rainfall (250 mm/h) and the remaining part of the runoff flows downstream along the road, which may cause local inundation and become a safety hazard. The curb inlet becomes the bottleneck of the RBS system that could impede the runoff flowing into the bioretention strip for detention and infiltration to improve the stormwater quality.


Sign in / Sign up

Export Citation Format

Share Document