scholarly journals Digital coded exposure formation of frames from event-based imagery

Author(s):  
Andrew Gothard ◽  
Daniel Jones ◽  
Andre Green ◽  
Michael Torrez ◽  
Alessandro Cattaneo ◽  
...  

Abstract Event-driven neuromorphic imagers have a number of attractive properties including low-power consumption, high dynamic range, the ability to detect fast events, low memory consumption and low band-width requirements. One of the biggest challenges with using event-driven imagery is that the field of event data processing is still embryonic. In contrast, decades worth of effort have been invested in the analysis of frame-based imagery. Hybrid approaches for applying established frame-based analysis techniques to event-driven imagery have been studied since event-driven imagers came into existence. However, the process for forming frames from event-driven imagery has not been studied in detail. This work presents a principled digital coded exposure approach for forming frames from event-driven imagery that is inspired by the physics exploited in a conventional camera featuring a shutter. The technique described in this work provides a fundamental tool for understanding the temporal information content that contributes to the formation of a frame from event-driven imagery data. Event-driven imagery allows for the application of arbitrary virtual digital shutter functions to form the final frame on a pixel-by-pixel basis. The proposed approach allows for the careful control of the spatio-temporal information that is captured in the frame. Furthermore, unlike a conventional physical camera, event-driven imagery can be formed into any variety of possible frames in post-processing after the data is captured. Furthermore, unlike a conventional physical camera, coded-exposure virtual shutter functions can assume arbitrary values including positive, negative, real, and complex values. The coded exposure approach also enables the ability to perform applications of industrial interest such as digital stroboscopy without any additional hardware. The ability to form frames from event-driven imagery in a principled manner opens up new possibilities in the ability to use conventional frame-based image processing techniques on event-driven imagery.

2017 ◽  
Vol 56 (13) ◽  
pp. 3831 ◽  
Author(s):  
Wei Feng ◽  
Fumin Zhang ◽  
Weijing Wang ◽  
Wei Xing ◽  
Xinghua Qu

2021 ◽  
Author(s):  
Shixiong Zhang ◽  
Wenmin Wang

<div>Event-based vision is a novel bio-inspired vision that has attracted the interest of many researchers. As a neuromorphic vision, the sensor is different from the traditional frame-based cameras. It has such advantages that conventional frame-based cameras can’t match, e.g., high temporal resolution, high dynamic range(HDR), sparse and minimal motion blur. Recently, a lot of computer vision approaches have been proposed with demonstrated success. However, there is a lack of some general methods to expand the scope of the application of event-based vision. To be able to effectively bridge the gap between conventional computer vision and event-based vision, in this paper, we propose an adaptable framework for object detection in event-based vision.</div>


2017 ◽  
Vol 36 (2) ◽  
pp. 142-149 ◽  
Author(s):  
Elias Mueggler ◽  
Henri Rebecq ◽  
Guillermo Gallego ◽  
Tobi Delbruck ◽  
Davide Scaramuzza

New vision sensors, such as the dynamic and active-pixel vision sensor (DAVIS), incorporate a conventional global-shutter camera and an event-based sensor in the same pixel array. These sensors have great potential for high-speed robotics and computer vision because they allow us to combine the benefits of conventional cameras with those of event-based sensors: low latency, high temporal resolution, and very high dynamic range. However, new algorithms are required to exploit the sensor characteristics and cope with its unconventional output, which consists of a stream of asynchronous brightness changes (called “events”) and synchronous grayscale frames. For this purpose, we present and release a collection of datasets captured with a DAVIS in a variety of synthetic and real environments, which we hope will motivate research on new algorithms for high-speed and high-dynamic-range robotics and computer-vision applications. In addition to global-shutter intensity images and asynchronous events, we provide inertial measurements and ground-truth camera poses from a motion-capture system. The latter allows comparing the pose accuracy of ego-motion estimation algorithms quantitatively. All the data are released both as standard text files and binary files (i.e. rosbag). This paper provides an overview of the available data and describes a simulator that we release open-source to create synthetic event-camera data.


2021 ◽  
Author(s):  
Shixiong Zhang ◽  
Wenmin Wang

<div>Event-based vision is a novel bio-inspired vision that has attracted the interest of many researchers. As a neuromorphic vision, the sensor is different from the traditional frame-based cameras. It has such advantages that conventional frame-based cameras can’t match, e.g., high temporal resolution, high dynamic range(HDR), sparse and minimal motion blur. Recently, a lot of computer vision approaches have been proposed with demonstrated success. However, there is a lack of some general methods to expand the scope of the application of event-based vision. To be able to effectively bridge the gap between conventional computer vision and event-based vision, in this paper, we propose an adaptable framework for object detection in event-based vision.</div>


2018 ◽  
Vol 12 ◽  
Author(s):  
Alexandre Marcireau ◽  
Sio-Hoi Ieng ◽  
Camille Simon-Chane ◽  
Ryad B. Benosman

1986 ◽  
Vol 133 (1) ◽  
pp. 26
Author(s):  
J. Mellis ◽  
G.R. Adams ◽  
K.D. Ward

Sign in / Sign up

Export Citation Format

Share Document