scholarly journals The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division

Author(s):  
P Apostolakos ◽  
P Livanos ◽  
E Giannoutsou ◽  
E Panteris ◽  
B Galatis
2015 ◽  
Vol 26 (4) ◽  
pp. 751-761 ◽  
Author(s):  
Toshinori Matsui ◽  
Takashi Watanabe ◽  
Kenji Matsuzawa ◽  
Mai Kakeno ◽  
Nobumasa Okumura ◽  
...  

The organization of the Golgi apparatus is essential for cell polarization and its maintenance. The polarity regulator PAR complex (PAR3, PAR6, and aPKC) plays critical roles in several processes of cell polarization. However, how the PAR complex participates in regulating the organization of the Golgi remains largely unknown. Here we demonstrate the functional cross-talk of the PAR complex with CLASP2, which is a microtubule plus-end–tracking protein and is involved in organizing the Golgi ribbon. CLASP2 directly interacted with PAR3 and was phosphorylated by aPKC. In epithelial cells, knockdown of either PAR3 or aPKC induced the aberrant accumulation of CLASP2 at the trans-Golgi network (TGN) concomitantly with disruption of the Golgi ribbon organization. The expression of a CLASP2 mutant that inhibited the PAR3-CLASP2 interaction disrupted the organization of the Golgi ribbon. CLASP2 is known to localize to the TGN through its interaction with the TGN protein GCC185. This interaction was inhibited by the aPKC-mediated phosphorylation of CLASP2. Furthermore, the nonphosphorylatable mutant enhanced the colocalization of CLASP2 with GCC185, thereby perturbing the Golgi organization. On the basis of these observations, we propose that PAR3 and aPKC control the organization of the Golgi through CLASP2 phosphorylation.


2008 ◽  
Vol 65 (11) ◽  
pp. 863-875 ◽  
Author(s):  
Panagiotis Apostolakos ◽  
Emmanuel Panteris ◽  
Basil Galatis

ACS Nano ◽  
2012 ◽  
Vol 6 (11) ◽  
pp. 9615-9622 ◽  
Author(s):  
Lijuan Zhao ◽  
Bo Peng ◽  
Jose A. Hernandez-Viezcas ◽  
Cyren Rico ◽  
Youping Sun ◽  
...  

2001 ◽  
Vol 12 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Elisabeth A. Cox ◽  
Sarita K. Sastry ◽  
Anna Huttenlocher

Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through α5β1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.


Phyton ◽  
2010 ◽  
Vol 79 (1) ◽  
pp. 101-108
Author(s):  
Buentello Volante B ◽  
F D韆z de Le髇-S醤chez ◽  
F Rivera-Cabrera ◽  
R Aguilar Caballero ◽  
M Ponce-Valadez ◽  
...  

2012 ◽  
Vol 53 ◽  
pp. 95-109 ◽  
Author(s):  
Nitin Sabherwal ◽  
Nancy Papalopulu

Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.


2013 ◽  
Vol 304 (6) ◽  
pp. H874-H884 ◽  
Author(s):  
Lung-Chih Li ◽  
Zac Varghese ◽  
John F. Moorhead ◽  
Chien-Te Lee ◽  
Jin-Bor Chen ◽  
...  

Myeloid differentiation factor 88 (MyD88) and NF-κB play central roles in mediating signal transduction of the Toll-like receptor (TLR) superfamily in human macrophages. The feedback regulation of LDL receptor (LDLR) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR) are mediated by the sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP)-SREBP2 pathway and are key regulatory elements for cholesterol homeostasis in human cells. This study was designed to investigate cross-talk between TLR4-MyD88-NF-κB and SCAP-SREBP2 pathways in macrophage foam cell formation. phorbol 12-myristate 13-acetate-activated THP-1 macrophages were transfected with negative control or MyD88 small interfering (si)RNA. Transfected cells were incubated with LPS in the absence or presence of LDL or IκB kinase (IKK) inhibitor (BMS-345541). Intracellular cholesterol content was assessed. mRNA and protein expression of LDLR, HMG-CoAR, SCAP, and SREBP2 were examined by real-time RT-PCR and Western blot analysis. Intracellular translocation of SCAP in the organelles was detected by immunofluorecence and confocal microscopy. We demonstrated that LPS-induced cholesterol accumulation was attenuated by applying siRNA against MyD88 in the absence or presence of LDL. LPS increased both gene and protein expression of LDLR and HMG-CoAR by increasing expression and abnormal translocation of SCAP from the endoplasmic reticulum to the Golgi. These effects were blocked by knockdown of MyD88 or blockade of IKK or by knockdown of SCAP, suggesting that the cross-talk between NF-κB and SCAP plays an important role in macrophage foam cell formation and that interfering with the cross-talk might be a potential approach in preventing LPS-induced macrophage foam cell formation.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
O. E. Bradfute ◽  
R. E. Whitmoyer ◽  
L. R. Nault

A pathogen transmitted by the eriophyid mite, Aceria tulipae, infects a number of Gramineae producing symptoms similar to wheat spot mosaic virus (1). An electron microscope study of leaf ultrastructure from systemically infected Zea mays, Hordeum vulgare, and Triticum aestivum showed the presence of ovoid, double membrane bodies (0.1 - 0.2 microns) in the cytoplasm of parenchyma, phloem and epidermis cells (Fig. 1 ).


Author(s):  
O. E. Bradfute

Maize mosaic virus (MMV) causes a severe disease of Zea mays in many tropical and subtropical regions of the world, including the southern U.S. (1-3). Fig. 1 shows internal cross striations of helical nucleoprotein and bounding membrane with surface projections typical of many plant rhabdovirus particles including MMV (3). Immunoelectron microscopy (IEM) was investigated as a method for identifying MMV. Antiserum to MMV was supplied by Ramon Lastra (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela).


Sign in / Sign up

Export Citation Format

Share Document