Screening of flavor compounds using Ucp1-luciferase reporter beige adipocytes identified 5-methylquinoxaline as a novel UCP1-inducing compoundsss

Author(s):  
Satoko Kawarasaki ◽  
Kazuki Matsuo ◽  
Hidetoshi Kuwata ◽  
Lanxi Zhou ◽  
Jungin Kwon ◽  
...  

Abstract Uncoupling protein 1 (UCP1) in brown or beige adipocytes is a mitochondrial protein that is expected to enhance whole-body energy expenditure. For the high-throughput screening of UCP1 transcriptional activity regulator, we established a murine inguinal white adipose tissue-derived Ucp1-luciferase reporter preadipocyte line. Using this reporter preadipocyte line, 654 flavor compounds were screened, and a novel Ucp1 expression-inducing compound, 5-methylquinoxaline, was identified. Adipocytes treated with 5-methylquinoxaline showed increased Ucp1 mRNA expression levels and enhanced oxygen consumption. 5-methylquinoxaline induced Ucp1 expression through peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and 5-methylquinoxaline-induced PGC1α activation seemed to be partially regulated by its phosphorylation or deacetylation. Thus, our Ucp1-luciferase reporter preadipocyte line is a useful tool for screening of Ucp1 inductive compounds.

2019 ◽  
Vol 20 (2) ◽  
pp. 274 ◽  
Author(s):  
Ana Yuliana ◽  
Asumi Daijo ◽  
Huei-Fen Jheng ◽  
Jungin Kwon ◽  
Wataru Nomura ◽  
...  

Endoplasmic reticulum (ER) homeostasis is critical in maintaining metabolic regulation. Once it is disrupted due to accumulated unfolded proteins, ER homeostasis is restored via activation of the unfolded protein response (UPR); hence, the UPR affects diverse physiological processes. However, how ER stress influences adipocyte functions is not well known. In this study, we investigated the effect of ER stress in thermogenic capacity of mice beige adipocytes. Here, we show that the expression of uncoupling protein 1 (Ucp1) involved in thermoregulation is severely suppressed under ER stress conditions (afflicted by tunicamycin) in inguinal white adipose tissue (IWAT) both in vitro and in vivo. Further investigation showed that extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were both activated after ER stress stimulation and regulated the mRNA levels of Ucp1 and peroxisome proliferator-activated receptor γ (Pparγ), which is known as a Ucp1 transcriptional activator, in vitro and ex vivo. We also found that Pparγ protein was significantly degraded, reducing its recruitment to the Ucp1 enhancer, thereby downregulating Ucp1 expression. Additionally, only JNK inhibition, but not ERK, rescued the Pparγ protein. These findings provide novel insights into the regulatory effect of ER stress on Ucp1 expression via Pparγ suppression in beige adipocytes.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1418
Author(s):  
Woo Yong Park ◽  
Gahee Song ◽  
Ja Yeon Park ◽  
Kwan-Il Kim ◽  
Kwang Seok Ahn ◽  
...  

The extract of the Gardenia jasminoides fruit (GJFE) can been consumed as an herbal tea or used as a yellow dye. Recently, studies report that GFJE exerts inhibitory effects on lipid accumulation and adipogenesis in white adipocytes. We evaluated the thermogenic actions of GJFE by focusing on mitochondrial activation and studying the underlying mechanisms. To investigate the role of GJFE on thermogenesis in mice, we used an acute cold exposure model. After 2 weeks of feeding, the cold tolerance of GJFE-fed mice was notably increased compared to PBS-fed mice. This was due to an increase in thermogenic proteins in the inguinal white adipose tissue of the cold-exposed mice. Moreover, GJFE significantly increased thermogenic factors such as peroxisome proliferator-activated receptor gamma (PPARγ), uncoupling protein 1 (UCP1), and PPARγ coactivator 1 alpha (PGC1α) in vitro as well. Factors related to mitochondrial abundance and functions were also induced by GJFE in white and beige adipocytes. However, the treatment of PPARγ inhibitor abolished the GJFE-induced changes, indicating that activation of PPARγ is critical for the thermogenic effect of GJFE. In conclusion, GJFE induces thermogenic action by activating mitochondrial function via PPARγ activation. Through these findings, we suggest GJFE as a potential anti-obesity agent with a novel mechanism involving thermogenic action in white adipocytes.


2019 ◽  
Vol 13 (1) ◽  
pp. 38-48
Author(s):  
Samihah Z.M. Nani ◽  
Abubakar Jaafar ◽  
Fadzilah A.A. Majid ◽  
Akbariah Mahdzir ◽  
Md. Nor Musa

Objective: Deep sea water (DSW) accumulates many scientific shreds of evidence in treating obesity. Previous studies indicated that it reduces white adipose tissue (WAT) and body weight. WAT is energy storage fat, while beige adipose tissue is energy supply fat. In this study, the effects of DSW in the induction of beige adipocytes from mouse adipose tissue-derived stromal vascular fraction (SVF) cells are determined. Methods: Adipose tissue-derived SVF cells were isolated from mice and used for induction of beige adipocytes and treated with DSW at several concentrations. Results: During the course of beige adipocytes differentiation, DSW treatment increased lipid accumulation and upregulated adipogenic genes markers expression such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein a (C/EBP-α), and fatty acid binding protein 4 (FABP4), and also upregulated thermogenic genes markers such as the uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and cell deathinducing DFFA-like effector A (Cidea) in beige adipocytes. Conclusion: DSW has the potential to promote browning of WAT and upregulates the thermogenic genes that are responsible for energy expenditure.


2016 ◽  
Vol 310 (8) ◽  
pp. E676-E687 ◽  
Author(s):  
Tomoya Sakamoto ◽  
Takahiro Nitta ◽  
Koji Maruno ◽  
Yu-Sheng Yeh ◽  
Hidetoshi Kuwata ◽  
...  

Emergence of thermogenic adipocytes such as brown and beige adipocytes is critical for whole body energy metabolism. Promoting the emergence of these adipocytes, which increase energy expenditure, could be a viable strategy in treating obesity and its related diseases. However, little is known regarding the mechanisms that regulate the emergence of these adipocytes in obese adipose tissue. Here, we demonstrated that classically activated macrophages (M1 Mϕ) suppress the induction of thermogenic adipocytes in obese adipose tissues of mice. Cold exposure significantly induced the expression levels of uncoupling protein-1 (UCP1), which is a mitochondrial protein unique in thermogenic adipocytes, in C57BL/6 mice fed a normal diet. However, UCP1 induction was significantly suppressed in adipose tissues of C57BL/6 mice fed a high-fat diet, into which M1 Mϕ infiltrated. Depletion of M1 Mϕ using clodronate liposomes eliminated the suppressive effect and markedly reduced the mRNA level of tumor necrosis factor-α (TNFα) in the adipose tissues. Importantly, consistent with the observed changes in the expression levels of marker genes for thermogenic adipocytes, combination treatment of clodronate liposome and cold exposure resulted in metabolic benefits such as lowered body weight and blood glucose level in obese mice. Moreover, intraperitoneal injection of recombinant TNFα protein suppressed UCP1 induction in lean adipose tissues of mice. Collectively, our data indicate that infiltrated M1 Mϕ suppress the induction of thermogenic adipocytes in obese adipose tissues via TNFα. This report suggests that inflammation induced by infiltrated Mϕ could cause not only insulin resistance but also reduction of energy expenditure in adipose tissues.


2018 ◽  
Vol 61 (3) ◽  
pp. 115-126 ◽  
Author(s):  
Jessica A Deis ◽  
Hong Guo ◽  
Yingjie Wu ◽  
Chengyu Liu ◽  
David A Bernlohr ◽  
...  

Lipocalin-2 (LCN2) has been previously characterized as an adipokine regulating thermogenic activation of brown adipose tissue and retinoic acid (RA)-induced thermogenesis in mice. The objective of this study was to explore the role and mechanism for LCN2 in the recruitment and retinoic acid-induced activation of brown-like or ‘beige’ adipocytes. We found LCN2 deficiency reduces key markers of thermogenesis including uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in inguinal white adipose tissue (iWAT) and inguinal adipocytes derived from Lcn2 −/− mice. Lcn2 −/− inguinal adipocytes have attenuated insulin-induced upregulation of thermogenic gene expression and p38 mitogen-activated protein kinase (p38MAPK) signaling pathway activation. This is accompanied by a lower basal and maximal oxidative capacity in Lcn2 −/− inguinal adipocytes, indicating mitochondrial dysfunction. Recombinant Lcn2 was able to restore insulin-induced p38MAPK phosphorylation in both WT and Lcn2 −/− inguinal adipocytes. Rosiglitazone treatment during differentiation of Lcn2 −/− adipocytes is able to recruit beige adipocytes at a normal level, however, further activation of beige adipocytes by insulin and RA is impaired in the absence of LCN2. Further, the synergistic effect of insulin and RA on UCP1 and PGC-1α expression is markedly reduced in Lcn2 −/− inguinal adipocytes. Most intriguingly, LCN2 and the retinoic acid receptor-alpha (RAR-α) are concurrently translocated to the plasma membrane of adipocytes in response to insulin, and this insulin-induced RAR-α translocation is absent in adipocytes deficient in LCN2. Our data suggest a novel LCN2-mediated pathway by which RA and insulin synergistically regulates activation of beige adipocytes via a non-genomic pathway of RA action.


2020 ◽  
Author(s):  
Pardis Irandoost ◽  
Naimeh Mesri Alamdari ◽  
Atoosa Saidpour ◽  
Farzad Shidfar ◽  
Neda Roshanravan ◽  
...  

Abstract Background: Obesity is a public health problem across the world. Development of beige adipocytes in white adipose tissue (WAT) and activation of brown adipose tissue (BAT) can support obesity management. We aimed to investigate the effects of royal jelly (RJ) and tocotrienol-rich fraction (TRF) along with calorie restriction diet (CRD) on the genes involved in beige fat formation and BAT activation.Methods: Fifty 3-week-old male Wistar rats were fed high-fat diet (HFD) for 17 weeks. When obesity was induced, they were randomly divided into 5 groups (n=10/group): HFD, CRD, RJ+CRD, TRF+CRD, RJ+TRF+CRD for an additional 8 weeks. Finally, body weight was measured. Moreover, WAT and BAT were dissected for assessing the expression of major genes involved in adipose thermogenesis and histological changes evaluation. Results: At the end of the intervention, weight significantly decreased in RJ and RJ+TRF groups relative to the CRD group (p<0.05). RJ remarkably increased the expression of uncoupling protein 1 (UCP1) by 5.81 and 4.99 times more than CRD alone in WAT and BAT respectively (p<0.001). Expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), peroxisome proliferator-activated receptor-α (PPAR-α) and Sirtuin1 (SIRT1) was significantly increased in WAT and BAT of rats receiving RJ and RJ+TRF. Peroxisome proliferator-activated receptor-γ (PPAR-Ƴ) expression was not noticeably changed in assessed adipose tissues. Brown-like adipocytes in WAT and denser adipocytes in BAT were obvious in RJ and RJ+TRF groups. However, the effect of TRF on studied genes was not noticeable. Conclusion: RJ+CRD improved markers of adipose thermogenesis and induced anti-obesity effects more than CRD alone did. Furthermore, RJ remodeled adipose tissue and could be considered as a new therapeutic target.


2019 ◽  
Vol 71 (3) ◽  
pp. 533-540 ◽  
Author(s):  
Hui-Jian Chen ◽  
Jie Xiang ◽  
Wan-Xia Zhang ◽  
Ao Sun ◽  
Gai-Ling Li ◽  
...  

Nicotine, the main component of cigarette smoke, affects white/brown adipocytes. Few studies have concentrated on beige adipocytes. In this study, 3T3-L1 cells were differentiated in the presence of nicotine (25, 50 and 100 ?mol/L) during early differentiation and maintenance stages. Cell viability and the state of lipid droplets were assessed by the MTT assay and Oil Red O, respectively, and the expression of beige-related genes and proteins was examined by RT-qPCR, Western blotting and flow cytometry. Nicotine did not alter adipocyte differentiation; however, it increased the expression of peroxisome proliferator- activated receptor gamma (PPAR?) protein during early differentiation and maintenance. Nicotine treatment during early differentiation downregulated gene and protein expression of PPAR? coactivator 1-alpha (PGC-1?), uncoupling protein 1 (UCP1) and cluster of differentiation 137 (CD137), and gene expression of Cbp/p300 interacting transactivator with Glu/ Asp rich carboxy-terminal domain 1 (Cited1), transmembrane protein 26 (Tmem26), and short stature homeobox 2 (Shox2). Nicotine treatment during the maintenance stage upregulated these beige-related genes/proteins. Nicotine treatment of immature adipocytes damaged beige function through a decrease in PGC-1?/UCP1 expression, but nicotine treatment of mature adipocytes or both immature and mature cells enhanced beige functioning. Nicotine induced beige-like phenotype dysfunction in 3T3-L1 adipocytes. This process may affect thermogenesis in adipose tissue and cause a dysfunction in fat metabolism.


2007 ◽  
Vol 21 (7) ◽  
pp. 1581-1592 ◽  
Author(s):  
Darja Debevec ◽  
Mark Christian ◽  
Daniel Morganstein ◽  
Asha Seth ◽  
Birger Herzog ◽  
...  

Abstract Expression of uncoupling protein 1 (Ucp1) mRNA is elevated in differentiated adipocytes derived from brown or white adipose tissue devoid of the nuclear receptor corepressor receptor interacting protein 140 (RIP140). Increased expression is mediated in part by the recruitment of peroxisome proliferator activated receptors α and γ, together with estrogen-related receptor α, which functions through a novel binding site on the Ucp1 enhancer. This demonstrates that regulation of Ucp1 expression in the absence of RIP140 involves derepression of at least three different nuclear receptors. The ability to increase expression of Ucp1 by β-adrenergic signaling is independent of RIP140, as shown by the action of the β3-adrenergic agonist CL 316,243 to stimulate expression in both brown and white adipocytes in the presence and absence of the corepressor. Therefore, the expression of this metabolic uncoupling protein in adipose cells is regulated by inhibition as well as activation of distinct signaling pathways.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


Sign in / Sign up

Export Citation Format

Share Document