Dynamics of epigenetic modifiers and environmentally sensitive proteins in a reptile with temperature induced sex reversal

Author(s):  
Sarah Whiteley ◽  
Robert D McCuaig ◽  
Clare E Holleley ◽  
Sudha Rao ◽  
Arthur Georges

Abstract The mechanisms by which sex is determined, and how a sexual phenotype is stably maintained during adulthood, has been the focus of vigorous scientific inquiry. Resources common to the biomedical field (automated staining and imaging platforms) were leveraged to provide the first immunofluorescent data for a reptile species with temperature induced sex reversal. Two four-plex immunofluorescent panels were explored across three sex classes (sex reversed ZZf females, normal ZWf females, and normal ZZm males). One panel was stained for chromatin remodelling genes JARID2 and KDM6B, and methylation marks H3K27me3, and H3K4me3 (Jumonji Panel). The other CaRe panel stained for environmental response genes CIRBP and RelA, and H3K27me3 and H3K4me3. Our study characterised tissue specific expression and cellular localisation patterns of these proteins and histone marks, providing new insights to the molecular characteristics of adult gonads in a dragon lizard Pogona vitticeps. The confirmation that mammalian antibodies cross react in P. vitticeps paves the way for experiments that can take advantage of this new immunohistochemical resource to gain a new understanding of the role of these proteins during embryonic development, and most importantly for P. vitticeps, the molecular underpinnings of sex reversal.

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 278-279
Author(s):  
M Defaye ◽  
N Abdullah ◽  
M Iftinca ◽  
C Altier

Abstract Background Long-lasting changes in neural pain circuits precipitate the transition from acute to chronic pain in patients living with inflammatory bowel diseases (IBDs). While significant improvement in IBD therapy has been made to reduce inflammation, a large subset of patients continues to suffer throughout quiescent phases of the disease, suggesting a high level of plasticity in nociceptive circuits during acute phases. The establishment of chronic visceral pain results from neuroplasticity in nociceptors first, then along the entire neural axis, wherein microglia, the resident immune cells of the central nervous system, are critically involved. Our lab has shown that spinal microglia were key in controlling chronic pain state in IBD. Using the Dextran Sodium Sulfate (DSS) model of colitis, we found that microglial G-CSF was able to sensitize colonic nociceptors that express the pain receptor TRPV1. While TRPV1+ nociceptors have been implicated in peripheral sensitization, their contribution to central sensitization via microglia remains unknown. Aims To investigate the role of TRPV1+ visceral afferents in microglial activation and chronic visceral pain. Methods We generated DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice in which TRPV1 sensory neurons can be inhibited (TRPV1-hM4Di) or activated (TRPV1-hM3Dq) in a time and tissue specific manner using the inert ligand Clozapine-N-Oxide (CNO). To test the inhibition of TRPV1 neurons in DSS-induced colitis, TRPV1-hM4Di mice were treated with DSS 2.5% or water for 7 days and received vehicle or CNO i.p. injection twice daily. To activate TRPV1 visceral afferents, TRPV1-hM3Dq mice received vehicle or CNO daily for 7 days, by oral gavage. After 7 days of treatment, visceral pain was evaluated by colorectal distension and spinal cords tissues were harvested to measure microglial activation. Results Our data validated the nociceptor specific expression and function of the DREADD in TRPV1-Cre mice. Inhibition of TRPV1 visceral afferents in DSS TRPV1-hM4Di mice was able to prevent the colitis-induced microglial activation and thus reduce visceral hypersensitivity. In contrast, activation of TRPV1 visceral afferents in TRPV1-hM3Dq mice was sufficient to drive microglial activation in the absence of colitis. Analysis of the proalgesic mediators derived from activated TRPV1-hM3Dq neurons identified ATP as a key factor of microglial activation. Conclusions Overall, these data provide novel insights into the mechanistic understanding of the gut/brain axis in chronic visceral pain and suggest a role of purinergic signaling that could be harnessed for testing effective therapeutic approaches to relieve pain in IBD patients. Funding Agencies CCCACHRI (Alberta Children’s Hospital Research Institute) and CSM (Cumming School of Medicine) postdoctoral fellowship


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Alexandra Korotaeva ◽  
Danzan Mansorunov ◽  
Natalya Apanovich ◽  
Anna Kuzevanova ◽  
Alexander Karpukhin

Neuroendocrine neoplasms (NEN) are infrequent malignant tumors of a neuroendocrine nature that arise in various organs. They occur most frequently in the lungs, intestines, stomach and pancreas. Molecular diagnostics and prognosis of NEN development are highly relevant. The role of clinical biomarkers can be played by microRNAs (miRNAs). This work is devoted to the analysis of data on miRNA expression in NENs. For the first time, a search for specificity or a community of their functional characteristics in different types of NEN was carried out. Their properties as biomarkers were also analyzed. To date, more than 100 miRNAs have been characterized as differentially expressed and significant for the development of NEN tumors. Only about 10% of the studied miRNAs are expressed in several types of NEN; differential expression of the remaining 90% was found only in tumors of specific localizations. A significant number of miRNAs have been identified as potential biomarkers. However, only a few miRNAs have values that characterized their quality as markers. The analysis demonstrates the predominant specific expression of miRNA in each studied type of NEN. This indicates that miRNA’s functional features are predominantly influenced by the tissue in which they are formed.


Genetics ◽  
1983 ◽  
Vol 103 (4) ◽  
pp. 675-689
Author(s):  
Jeffrey R Powell ◽  
Marko Andjelković

ABSTRACT Two polymorphic systems impinging on α-amylase in Drosophila pseudoobscura have been studied in laboratory populations maintained on medium in which the only carbohydrate source was starch (the substrate of amylase) and replicas maintained on medium in which the only carbohydrate source was maltose (the product of amylase). The two polymorphic systems were alleles at the structural gene (Amy) coding for the enzyme (allozymes) and variation in the tissue-specific expression along the adult midgut controlled by several genes. In the seven populations on maltose medium little consistent change was noted in either system. In the seven populations on starch medium, both polymorphisms exhibited selective changes. A midgut pattern of very limited expression of amylase rose in frequency in all starch populations, as did the frequency of the "fast" (1.00) Amy allele. The overall specific amylase activity did not differ between starch-adapted and maltose-adapted flies.—The results, along with previous studies, indicate that when a gene-enzyme system is specifically stressed in laboratory populations, allozymes often exhibit selective differences. Such results make the selectionist hypothesis at least tenable. Furthermore, the fact that both types of polymorphisms responded to selection indicates the role of structural gene vs. gene regulation changes in adaptive evolution is not an either/or question but one of relative roles and interactions.


2021 ◽  
Vol 22 (6) ◽  
pp. 2864
Author(s):  
Anna Pulawska-Czub ◽  
Tomasz D. Pieczonka ◽  
Paula Mazurek ◽  
Krzysztof Kobielak

Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


Blood ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 2561-2569 ◽  
Author(s):  
Tarik Möröy ◽  
Lothar Vassen ◽  
Brian Wilkes ◽  
Cyrus Khandanpour

AbstractThe DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type–specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.


2007 ◽  
Vol 353 (4) ◽  
pp. 1017-1022 ◽  
Author(s):  
Johji Nomura ◽  
Akinori Hisatsune ◽  
Takeshi Miyata ◽  
Yoichiro Isohama

2021 ◽  
pp. 1-11
Author(s):  
Adrián Ruiz-García ◽  
Álvaro S. Roco ◽  
Mónica Bullejos

The role of environmental factors in sexual differentiation in amphibians is not new. The effect of hormones or hormone-like compounds is widely demonstrated. However, the effect of temperature has traditionally been regarded as something anecdotal that occurs in extreme situations and not as a factor to be considered. The data currently available reveal a different situation. Sexual differentiation in some amphibian species can be altered even by small changes in temperature. On the other hand, although not proven, it is possible that temperature is related to the appearance of sex-reversed individuals in natural populations under conditions unrelated to environmental contaminants. According to this, temperature, through sex reversal (phenotypic sex opposed to genetic sex), could play an important role in the turnover of sex-determining genes and in the maintenance of homomorphic sex chromosomes in this group. Accordingly, and given the expected increase in global temperatures, growth and sexual differentiation in amphibians could easily be affected, altering the sex ratio in natural populations and posing major conservation challenges for a group in worldwide decline. It is therefore particularly urgent to understand the mechanism by which temperature affects sexual differentiation in amphibians.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Yeojin Do ◽  
Jin Gu Cho ◽  
Ji Young Park ◽  
Sumin Oh ◽  
Doyeon Park ◽  
...  

Cancer metastasis is the primary cause of cancer-related death and metastatic cancer has circulating-tumor cells (CTCs), which circulate in the bloodstream before invading other organs. Thus, understanding the precise role of CTCs may provide new insights into the metastasis process and reduce cancer mortality. However, the molecular characteristics of CTCs are not well understood due to a lack of number of CTCs. Therefore, suspension cells were generated from MDA-MB-468 cells to mimic CTCs, and we investigate the microRNA (miRNA)-dependent molecular networks and their role in suspension cells. Here, we present an integrated analysis of mRNA and miRNA sequencing data for suspension cell lines, through comparison with adherent cells. Among the differentially regulated miRNA–mRNAs axes, we focus on the miR-146a-Neuropilin2 (NRP2) axis, which is known to influence tumor aggressiveness. We show that miR-146a directly regulates NRP2 expression and inhibits Semaphorin3C (SEMA3C) signaling. Functional studies reveal that miR-146a represses SEMA3C-induced invasion and proliferation by targeting NRP2. Finally, high-NRP2 is shown to be associated with poor outcomes in breast cancer patients. This study identifies the key role of the miR-146a–NRP2 signaling axis that is critical for the regulation of migration and invasion in CTC-mimicking cells.


Sign in / Sign up

Export Citation Format

Share Document