scholarly journals A microgrid for the secluded Paana Theertham Kani settlement in India

Clean Energy ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 807-822
Author(s):  
C Palanichamy ◽  
Tan Woan Wen ◽  
P Naveen

Abstract Recognizing the importance of electricity as a driver of rapid economic growth and poverty alleviation, India aims to provide access to all households by 2030. Despite the best efforts of state and federal governments to meet consumers’ electrical needs, budget constraints, inefficient operations and massive loan burdens have hampered their efforts. Aside from these concerns, rural India, which accounts for 65% of the population, is plagued by a slew of issues, including low electricity demand, a low load factor and the expectation of cheap electricity. These concerns bind the authorities’ hands, preventing them from moving forward. As a result, this project aims to model an autonomous microgrid system that integrates three potential renewable-energy systems, namely wind, sun and hydrokinetic, to provide electricity for a remote society. It starts with assessing the region’s electricity needs with its inhabitants. The HOMER Pro platform creates a cost-effective microgrid based on the demand estimate. The components of the microgrid include 6.4-kW small wind turbine (SWT) groups, 4.4-kW solar photovoltaic (PV) panels, a 5-kW hydrokinetic water turbine, battery storage and a converter. The project is unique in that it considers site-specific initial capital costs, replacement costs, and operation and maintenance costs of the renewable-energy systems, and it does not include any environmentally hazardous energy system. The successful optimization results in terms of levelized energy costs are $0.0538, $0.0614 and $0.0427/kWh for wind, solar and hydrokinetic components, respectively, without any environmental issues.

2021 ◽  
Author(s):  
Guojuan Hai ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Koji Kajiyoshi ◽  
Long Wang ◽  
...  

Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for the renewable energy systems. Herein, a typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method....


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


2018 ◽  
Author(s):  
Ammar H. A. Dehwah ◽  
Moncef Krarti

To meet the increasing energy demand and to shave the peak, the Kingdom of Saudi Arabia (KSA) is currently planning to invest more on renewable energy (RE) seeking diversity of energy resources. Through the integration of demand side management measures and renewable energy distributed generation (DG) systems, the study outlined in this paper aims at investigating the potential of hybrid renewable energy systems in supplying energy demands for residential communities in an oil-rich country. The residential community considered in this study, located in the eastern region of KSA, has an annual electrical usage of 1,174 GWh and an electrical peak load of 335 MW that are met solely by the grid. The results of the analyses indicated that the implementation of cost-effective energy efficiency measures (EEMs) reduced electricity usage by 38% and peak demand by 51% as well as CO2 emissions by 38%. While, the analysis of the hybrid systems showed that purchasing electricity from the grid is the best option with a levelized cost of energy (LCOE) of $0.1/kWh based on the current renewable energy market and economic conditions of KSA, RE systems can be cost-effective to meet the loads of the residential communities under specific electricity prices and capital cost levels. This study can assist KSA decision makers establish effective and targeted policies that can facilitate and promote renewable technologies.


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


2020 ◽  
Author(s):  
Till Kolster ◽  
Rainer Krebs ◽  
Stefan Niessen ◽  
Mathias Duckheim

<div>Corrective transmission system operation can help integrate more renewable energy sources and save redispatch costs by providing a higher utilization of the power grid.</div><div>However, reliable and fast provision of flexibility are key to achieve corrective operation. <br></div><div>This work develops a new method to determine if flexibility from distribution grids is available on transmission corridors when needed. An analysis of the German energy system in the year 2030 is performed to estimate the potential of different flexibility options and shows the potential flexibility distribution systems can contribute to a corrective transmission system operation.<br> </div>


Author(s):  
Salam Waley Shneen ◽  
Dina Harith Shaker ◽  
Fatin Nabeel Abdullah

The change in loads in most applications whose source of nutrition is a renewable energy system. Renewable energy systems can change according to climatic conditions. To control and control these changes, the use of conventional control systems such as PIDs. The PID is one of the most common and used conventional control systems that have been chosen to output the type of power electronic devise (DC-DC converter) in different working conditions. The current study aims to improve the system performance through simulation. Simulation results demonstrate the effectiveness of the system with the controller based on setting parameters such as recording system states, embedded elevation time and transient response.


2020 ◽  
Vol 10 (6) ◽  
pp. 2068
Author(s):  
Rodolfo Dufo-López ◽  
José L. Bernal-Agustín

Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid [...]


Author(s):  
Dmitry Alexandrovich Solovyev ◽  
Maria Olegovna Morgunova ◽  
Alexander Alekseyevich Solovyev

The chapter focuses on different aspects and challenges of power supply for remote energy consumers in the Russian Arctic. The authors discuss the potential use of renewable energy, some specified technological features and risks related to the broader deployment of decentralized renewable energy systems in the Arctic region. Even though there is limited experience of renewable energy systems installation in the Russian Arctic and greater technological challenges, the authors see it as a potential opportunity to contribute to innovative and sustainable development of the region. The authors underline the potential synergistic effect of broader deployment of renewable energy systems in the Russian Arctic. The key argument is that a sustainable and efficient energy system will open new development opportunities and stimulate future socioeconomic development of the region through the use of local and renewable energy resources and the implementation of new power generation modes and technologies.


2021 ◽  
pp. 1-32
Author(s):  
Ruda Lee ◽  
Hyomun Lee ◽  
Dongsu Kim ◽  
Jongho Yoon

Abstract Battery systems are critical factors in the effective use of renewable energy systems because the self-production of electricity by renewables for self-consumption has become profitable for building applications. This study investigates the appropriate capacity of the Battery Energy Storage System (BESS) installed in all-electric zero energy power houses (AEZEPHs). The AEZEPH used for this study is a highly energy-efficient house. Its criteria indicate that all the electrical energy within the home is covered based on the generated electricity from on-site renewable energy systems, including that the annual net site energy use is almost equal to zero. The experiment for measured data of electricity consumed and generated in the buildings is conducted for a year (i.e., Jan. through Dec. 2014). Based on the measured data, patterns of the electricity consumed by the AEZEPH and generated by an on-site renewable energy system (i.e., photovoltaic (PV) system), and BESS's appropriate capacity is then analyzed and evaluated using the EES analysis tool, named Poly-sun. This study indicates that self-consumption can be increased up to 66% when the ESS system is installed and used during operating hours of the PV system. The amount of received electricity during the week tends to be reduced by about two times.


Sign in / Sign up

Export Citation Format

Share Document