scholarly journals Seeing the Unexpected: How Brains Read Communicative Intent through Kinematics

2019 ◽  
Vol 30 (3) ◽  
pp. 1056-1067 ◽  
Author(s):  
James P Trujillo ◽  
Irina Simanova ◽  
Asli Özyürek ◽  
Harold Bekkering

Abstract Social interaction requires us to recognize subtle cues in behavior, such as kinematic differences in actions and gestures produced with different social intentions. Neuroscientific studies indicate that the putative mirror neuron system (pMNS) in the premotor cortex and mentalizing system (MS) in the medial prefrontal cortex support inferences about contextually unusual actions. However, little is known regarding the brain dynamics of these systems when viewing communicatively exaggerated kinematics. In an event-related functional magnetic resonance imaging experiment, 28 participants viewed stick-light videos of pantomime gestures, recorded in a previous study, which contained varying degrees of communicative exaggeration. Participants made either social or nonsocial classifications of the videos. Using participant responses and pantomime kinematics, we modeled the probability of each video being classified as communicative. Interregion connectivity and activity were modulated by kinematic exaggeration, depending on the task. In the Social Task, communicativeness of the gesture increased activation of several pMNS and MS regions and modulated top-down coupling from the MS to the pMNS, but engagement of the pMNS and MS was not found in the nonsocial task. Our results suggest that expectation violations can be a key cue for inferring communicative intention, extending previous findings from wholly unexpected actions to more subtle social signaling.

2011 ◽  
Vol 26 (S2) ◽  
pp. 2111-2111
Author(s):  
T. Kicher

The term social cognition comprises of the perception and cognitive processing of stimuli of the social environment that is necessary to understand one's own behaviour and that of others. Social cognition is important for conscious and unconscious behaviour in social interactions and is composed of the recognition and interpretation of emotions in faces, body language and speech, reflection of one's own mental state and intentions as well as the realization of others’ intentions, thoughts and feelings. The mirror neuron system is involved in empathetic processes. Several aspects of the neural correlates of social interaction, embodiment and the mirror neuron system in schizophrenia and autism will be reported.


2020 ◽  
Author(s):  
Mei Yan Melody Chan ◽  
Yvonne M.Y. Han

Abstract Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlates of imitation, the mirror neuron system (MNS), are dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether mirror neurons are “broken” in ASD unresolved.Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe/imitate biological motions with/without emotional components. Effect-size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results The MNS is dysfunctional in ASD; not only the brain regions containing mirror neurons were affected, the brain regions supporting MNS functioning were also impaired. Second, MNS dysfunction in ASD is modulated by task complexity; differential activation patterns during the presentation of “cold” and “hot” stimuli might be a result of atypical functional connectivity in ASD. Third, MNS dysfunction in ASD individuals is modulated by age. MNS regions were found to show delayed maturation; abnormal lateralization development in some of the brain regions also contributed to the atypical development of the MNS in ASD. Limitations We have attempted to include a comprehensive set of original data for this analysis. However, whole brain analysis data were not obtainable from some of the published papers, these studies could not be included as a result. Moreover, the results indicating the age effect on MNS in ASD could only be generalized to individuals aged 11-37, as MNS activation remains unstudied for populations beyond this age range. Also, the ES-SDM linear regression modelling might not be ideal to illustrate the associations between age and MNS activation; the meta-regression results should be treated with caution. Conclusion There is a “global” rather than a “local” network dysfunction, which may underlie the imitation impairments in individuals with ASD. Task complexity and age modulate the functioning of the MNS, which may explain the previous peculiar results contributing to the unresolved “broken mirror neuron” debate.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


Author(s):  
Alain N. Sahin

Storytelling is a universal way of communication between human beings. It is inhibited when neurodevelopmental disorders hinder human reciprocity, the understanding of body language, and nuances of language. Asperger Syndrome (AS), one of these disorders, is characterized by social impairment and repetitive patterns of behaviour. Messages cannot be conveyed through storytelling, which causes social isolation and withdrawal of individuals with AS from society. The development of the mirror neuron system in the brain, which incites imitation of peers, might be altered in AS by a mechanism that is not entirely understood. Because mirroring the emotions of others is key to understanding their feelings and perceptions of the world, the “theory of mind” is not formed in individuals with AS as it normally would be. While studies have suggested this impediment, current views and evidence show that people with AS may use storytelling as a powerful tool to integrate themselves into society. Future research should investigate storytelling as an intervention to increase social interaction of individuals with AS.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2013 ◽  
Vol 36 (4) ◽  
pp. 417-418 ◽  
Author(s):  
Guillaume Dezecache ◽  
Laurence Conty ◽  
Julie Grèzes

AbstractWe question the idea that the mirror neuron system is the substrate of social affordances perception, and we suggest that most of the activity seen in the parietal and premotor cortex of the human brain is independent of mirroring activity as characterized in macaques, but rather reflects a process of one's own action specification in response to social signals.


Autism ◽  
2020 ◽  
Vol 24 (8) ◽  
pp. 1945-1959
Author(s):  
Luke Yates ◽  
Hannah Hobson

The mirror neuron system has been argued to be a key brain system responsible for action understanding and imitation. Subsequently, mirror neuron system dysfunction has therefore been proposed to explain the social deficits manifested within autism spectrum condition, an approach referred to as the broken mirror hypothesis. Despite excitement surrounding this hypothesis, extensive research has produced insufficient evidence to support the broken mirror hypothesis in its pure form, and instead two alternative models have been formulated: EP-M model and the social top-down response modulation (STORM) model. All models suggest some dysfunction regarding the mirror neuron system in autism spectrum condition, be that within the mirror neuron system itself or systems that regulate the mirror neuron system. This literature review compares these three models in regard to recent neuroscientific investigations. This review concludes that there is insufficient support for the broken mirror hypothesis, but converging evidence supports an integrated EP-M and STORM model. Lay abstract The mirror neuron system has been argued to be a key brain system responsible for understanding the actions of others and for imitation. It has therefore been proposed that problems within this system could explain the social difficulties experienced by people with autism spectrum condition. This idea is referred to as the broken mirror hypothesis. However, research has produced insufficient evidence to support the broken mirror hypothesis in its original form. Therefore, two other models have been suggested: EP-M model and the social top-down response modulation (STORM) model. All models suggest something is different regarding the mirror neuron system in autism spectrum condition: either within the mirror neuron system itself or within the systems that control the activity of the mirror neuron system. This literature review compares these three models in regard to recent neuroscientific investigations. This review concludes that there is insufficient support for both the broken mirror hypothesis, but converging evidence supports an integrated EP-M and STORM model.


2010 ◽  
Vol 6 (6) ◽  
pp. 758-761 ◽  
Author(s):  
Dimitrios Kourtis ◽  
Natalie Sebanz ◽  
Günther Knoblich

The ability to anticipate others' actions is crucial for social interaction. It has been shown that this ability relies on motor areas of the human brain that are not only active during action execution and action observation, but also during anticipation of another person's action. Recording electroencephalograms during a triadic social interaction, we assessed whether activation of motor areas pertaining to the human mirror-neuron system prior to action observation depends on the social relationship between the actor and the observer. Anticipatory motor activation was stronger when participants expected an interaction partner to perform a particular action than when they anticipated that the same action would be performed by a third person they did not interact with. These results demonstrate that social interaction modulates action simulation.


2011 ◽  
Vol 106 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Yavor Yalachkov ◽  
Marcus J. Naumer

The study of Wagner et al. ( J Neurosci 31: 894–898, 2011) reveals the neural correlates of spontaneously activated action representations in smokers when subjects watch movie characters smoke. We stress the importance of differentiating how these representations are activated: while the anterior intraparietal sulcus and inferior frontal gyrus are part of the mirror neuron system of smokers, the middle frontal gyrus, premotor cortex, and superior parietal lobule represent the smoking-related tool use skills and action knowledge activated by smoking paraphernalia.


Sign in / Sign up

Export Citation Format

Share Document