scholarly journals Sex-related differences in cardiac and myofilament function in rats with pressure-overload induced left ventricular hypertrophy

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Radovits ◽  
M Ruppert ◽  
A Olah ◽  
A.A Sayour ◽  
B.A Barta ◽  
...  

Abstract Introduction Recent findings indicate that sex is a major determinant of left ventricular (LV) structure in pressure overload (PO)-induced LV myocardial hypertrophy (LVH). However, data are scare regarding sex-related differences in LV function in case of PO-evoked LVH. Aim Hence, in the present study we aimed at comprehensively investigating sex-related functional differences on the global cardiac level and also on the myofilament level in PO-induced LVH. Method Abdominal aortic banding (AB) was carried out to induce chronic PO for 6 or 12 weeks in male and female rats. Age- and sex-matched sham-operated animals served as controls. The development of LVH was followed by serial echocardiography. The extent of cardiomyocyte hypertrophy and myocardial fibrosis were evaluated by histology. Cardiac function was assessed by pressure-volume analysis. Force measurement was carried out in permeabilized cardiomyocytes to compute myofilament function. Results At week 6, robust myocardial hypertrophy, concentric LV geometry and moderate interstitial fibrosis were detected in both male and female AB rats. This early stage of PO-induced LVH was associated with increased LV contractility (slope of end-systolic pressure-volume relationship [ESPVR, mmHg/μl]: 3.09±0.18 Male-AB-wk6 vs. 1.79±0.22 Male-Sham-wk6 P<0.05; 3.68±0.77 Female-AB-wk6 vs. 1.87±0.21 Female-Sham-wk6 P<0.05) and enhanced myofilament Ca2+ sensitivity in both sexes (pCa50: 5.86±0.01 Male-AB-wk6 vs. 5.73±0.02 Male-Sham-wk6 P<0.05; 5.94±0.03 Female-AB-wk6 vs. 5.73±0.01 Female-Sham-wk6 P<0.05). At week 6, the augmented LV contractility effectively counterbalanced the increased afterload in both male and female AB groups. Hence, ventricular-arterial coupling (VAC) was maintained and LV systolic function was preserved in the AB groups in both sexes. In contrast, at week 12, marked sex differences could be observed. At this later stage, LVH was characterized by eccentric remodeling and intensified collagen accumulation in male AB rats. The initial LV contractility augmentation (slope of ESPVR, mmHg/μl: 1.74±0.13 Male-AB-wk12 vs. 1.31±0.17 Male-Sham-wk12 n.s.) as well as the enhanced myofilament Ca2+ sensitivity (pCa50: 5.78±0.02 Male-AB-wk12 vs. 5.75±0.01 Male-Sham-wk12 n.s.) diminished, leading to impaired VAC and reduced LV systolic function. On the contrary, in female AB rats, cardiac contractility (ESPVR, mmHg/ μl: 3.97±0.50 Female-AB-wk12 vs. 2.08±0.17 Female-Sham-wk12 P<0.05) and myofilament Ca2+ sensitivity (pCa50:5.85±0.02 Female-AB-wk12 vs. 5.78±0.01 Female-Sham-wk12 P<0.05) remained increased, resulting in adequate VAC and preserved LV systolic function at late-stage of PO-induced LVH as well. Conclusion The initially augmented LV contractility and enhanced myofilament Ca2+ sensitivity declines in male but not in female AB rats at later time points. Hence, characteristically different alterations occur in LV systolic function between the two sexes in late-stage of PO-evoked LVH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): NVKP_16-1-2016-0017.

2018 ◽  
Vol 315 (3) ◽  
pp. H502-H511 ◽  
Author(s):  
Mihály Ruppert ◽  
Sevil Korkmaz-Icöz ◽  
Sivakkanan Loganathan ◽  
Weipeng Jiang ◽  
Lorenz Lehmann ◽  
...  

Sex differences in pressure overload (PO)-induced left ventricular (LV) myocardial hypertrophy (LVH) have been intensely investigated. Nevertheless, sex-related disparities of LV hemodynamics in LVH were not examined in detail. Therefore, we aimed to provide a detailed characterization of distinct aspects of LV function in male and female rats during different stages of LVH. Banding of the abdominal aorta (AB) was performed to induce PO for 6 or 12 wk in male and female rats. Control animals underwent sham operation. The development of LVH was followed by serial echocardiography. Cardiac function was assessed by pressure-volume analysis. Cardiomyocyte hypertrophy and fibrosis were evaluated by histology. At week 6, increased LV mass index, heart weight-to-tibial length, cardiomyocyte diameter, concentric LV geometry, and moderate interstitial fibrosis were detected in both male and female AB rats, indicating the development of an early stage of LVH. Functionally, at this time, impaired active relaxation, increased contractility, and preserved ventricular-arterial coupling were observed in the AB groups in both sexes. In contrast, at week 12, progressive deterioration of LVH-associated structural and functional alterations occurred in male but not female animals with sustained PO. Accordingly, at this later stage, LVH was associated with eccentric remodeling, exacerbated fibrosis, and increased chamber stiffness in male AB rats. Furthermore, augmented contractility declined in male but not female AB animals, resulting in contractility-afterload mismatch. Maintained contractility augmentation, preserved ventricular-arterial coupling, and better myocardial compliance in female rats contribute to sex differences in LV function during the progression of PO-induced LVH. NEW & NOTEWORTHY We investigated sex differences in pressure overload-induced left ventricular myocardial hypertrophy for the first time on the functional level by pressure-volume analysis. We found that left ventricular hypertrophy was initially characterized by prolonged active relaxation, increased contractility, and maintained ventricular-arterial coupling in both sexes. However, at a later stage, augmented contractility declined in mate but not female rats, resulting in contractility-afterload mismatch. Furthermore, in male rats, increased myocardial stiffness also contributed to hypertrophy-associated diastolic dysfunction.


2009 ◽  
Vol 297 (5) ◽  
pp. H1814-H1819 ◽  
Author(s):  
Ricardo J. Gelpi ◽  
Shumin Gao ◽  
Peiyong Zhai ◽  
Lin Yan ◽  
Chull Hong ◽  
...  

Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase that induces myocardial growth in response to several physiological and pathological stimuli. Calcineurin inhibition, induced either via cyclosporine or genetically, can decrease myocardial hypertrophy secondary to pressure overload without affecting left ventricular (LV) systolic function. Since hypertrophy can also affect LV diastolic function, the goal of this study was to examine the effects of chronic pressure overload (2 wk aortic banding) in transgenic (Tg) mice overexpressing Zaki-4β (TgZ), a specific endogenous inhibitor of calcineurin, on LV diastolic function. As expected, in the TgZ mice with calcineurin inhibitor overexpression, aortic banding reduced the degree of LV hypertrophy, as assessed by LV weight-to-body weight ratio (3.5 ± 0.1) compared with that in non-Tg mice (4.6 ± 0.2). LV systolic function remained compensated in both groups with pressure overload. However, the LV end-diastolic stress-to-LV end-diastolic dimension ratio, an index of diastolic stiffness and LV pressure half-time and isovolumic relaxation time, two indexes of isovolumic relaxation, increased significantly more in TgZ mice with aortic banding. Protein levels of phosphorylated phospholamban (PS16), sarco(endo)plasmic reticulum Ca2+-ATPase 2a, phosphorylated ryanodine receptor, and the Na+/Ca2+ exchanger were also reduced significantly ( P < 0.05) in the banded TgZ mice. As expected, genetic calcineurin inhibition inhibited the development of LV hypertrophy with chronic pressure overload but also induced LV diastolic dysfunction, as reflected by both impaired isovolumic relaxation and increased myocardial stiffness. Thus genetic calcineurin inhibition reveals a new mechanism regulating LV diastolic function.


2007 ◽  
Vol 293 (5) ◽  
pp. H2650-H2658 ◽  
Author(s):  
Xavier Loyer ◽  
Patricia Oliviero ◽  
Thibaud Damy ◽  
Estelle Robidel ◽  
Françoise Marotte ◽  
...  

Clinical studies have documented sex differences in left ventricular (LV) hypertrophy patterns, but the mechanisms are so far poorly defined. This study aimed to determine whether 1) severe pressure overload altered expression and/or activity of cardiac constitutive nitric oxide synthase (NOS1 and NOS3) and 2) these changes were modulated according to sex. Analyses were performed 0.4–20 wk after thoracic aortic constriction (TAC) in male and female Wistar rats. Male rats with TAC exhibited early signs of cardiac dysfunction, as shown by echocardiographic and LV end-diastolic pressure measurements, whereas females with TAC exhibited higher LV hypertrophy (+96% vs. males at 20 wk; P < 0.05). After TAC, cardiac NOS1 expression was rapidly induced (0.4 wk) and stable afterward in males ( P < 0.05 vs. sham groups), whereas it was delayed in females. Accordingly, specific NOS1 activity was increased by 2 wk in male rats with TAC (+122%; P < 0.001 vs. sham groups) and only by 20 wk in females (+220%; P < 0.001 vs. sham groups). NOS1 activity was correlated with NOS1 level. Regarding cardiac NOS3, expression was unaffected by TAC, and the decrease in activity observed at early and late times in male and female rats with TAC, respectively, is shown to be related to NOS3 allosteric regulator caveolin-1 level. The data demonstrated a unique sex-dependent regulation of the constitutive NOSs in response to TAC in rats; such a difference might play a role in the sex-dependent adaptability of the heart in response to pressure overload.


1994 ◽  
Vol 267 (1) ◽  
pp. H232-H247 ◽  
Author(s):  
A. Gomez ◽  
H. Unruh ◽  
S. Mink

The effect of chronic right ventricular (RV) pressure overload on left ventricular (LV) systolic function in chronic obstructive lung disease is unclear. To examine LV systolic performance in pulmonary emphysema, a chronic canine model was developed in which pulmonary artery pressure could be elevated to a level found in human disease. Severe emphysema was produced by the repeated instillations of the enzyme papain into the lung. Sonomicrometry was used to assess LV dimensions along the septal-lateral, apex-base, and anterior-posterior orthogonal axes of the LV. With the animal conscious, measurements of LV systolic function were obtained over a wide range of LV circumferential end-ejection stresses at baseline and after 1 yr of emphysema (post-1-yr study). In the emphysema group (n = 5), the results showed that at the post-1-yr study, measurements of LV ejection fraction, mean velocity of circumferential shortening, and rate of anterior-posterior dimensional shortening were reduced compared with those obtained at the baseline study. In the emphysema group, end-systolic volume was increased for a given end-systolic pressure or stress at the post-1-yr study compared with baseline values, while fractional shortening measured along the three axes was decreased. There were no similar changes in systolic parameters in control groups. We conclude that chronic RV pressure overload may cause an impairment in LV systolic performance in chronic emphysema.


Circulation ◽  
1995 ◽  
Vol 91 (9) ◽  
pp. 2359-2370 ◽  
Author(s):  
Sheng-Jing Dong ◽  
Adrian P. Crawley ◽  
John H. MacGregor ◽  
Yael Fisher Petrank ◽  
Dale W. Bergman ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Marcos Garces ◽  
C Rios-Navarro ◽  
L Hueso ◽  
A Diaz ◽  
C Bonanad ◽  
...  

Abstract Background Angiogenesis participates in re-establishing microcirculation after myocardial infarction (MI). Purpose In this study, we aim to further understand the role of the anti-angiogenic isoform vascular endothelial growth factor (VEGF)-A165b after MI and explore its potential as a co-adjuvant therapy to coronary reperfusion. Methods Two mice MI models were formed: 1) permanent coronary ligation (non-reperfused MI), 2) transient 45-min coronary occlusion followed by reperfusion (reperfused MI); in both models, animals underwent echocardiography before euthanasia at day 21 after MI induction. Serum and myocardial VEGF-A165b levels were determined. In both experimental MI models, functional and structural implication of VEGF-A165b blockade was assessed. In a cohort of 104 ST-segment elevation MI patients, circulating VEGF-A165b levels were correlated with cardiovascular magnetic resonance-derived left ventricular ejection fraction at 6-months and with the occurrence of adverse events (death, heart failure and/or re-infarction). Results In both models, circulating and myocardial VEGF-A165b presence was increased 21 days after MI induction. Serum VEGF-A165b levels inversely correlated with systolic function evaluated by echocardiography. VEGF-A165b blockage increased capillary density, reduced infarct size, and enhanced left ventricular function in reperfused, but not in non-reperfused MI experiments. In patients, higher VEGF-A165b levels correlated with depressed ejection fraction and worse outcomes. Conclusions In experimental and clinical studies, higher serum VEGF-A165b levels associates with a worse systolic function. Its blockage enhances neoangiogenesis, reduces infarct size, and increases ejection fraction in reperfused, but not in non-reperfused MI experiments. Therefore, VEGF-A165b neutralization represents a potential co-adjuvant therapy to coronary reperfusion. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” (Exp. PIE15/00013, PI17/01836, PI18/00209 and CIBERCV16/11/00486).


Author(s):  
Philippe C. Wouters ◽  
Geert E. Leenders ◽  
Maarten J. Cramer ◽  
Mathias Meine ◽  
Frits W. Prinzen ◽  
...  

AbstractPurpose: Cardiac resynchronisation therapy (CRT) improves left ventricular (LV) function acutely, with further improvements and reverse remodelling during chronic CRT. The current study investigated the relation between acute improvement of LV systolic function, acute mechanical recoordination, and long-term reverse remodelling after CRT. Methods: In 35 patients, LV speckle tracking longitudinal strain, LV volumes & ejection fraction (LVEF) were assessed by echocardiography before, acutely within three days, and 6 months after CRT. A subgroup of 25 patients underwent invasive assessment of the maximal rate of LV pressure rise (dP/dtmax,) during CRT-implantation. The acute change in dP/dtmax, LVEF, systolic discoordination (internal stretch fraction [ISF] and LV systolic rebound stretch [SRSlv]) and systolic dyssynchrony (standard deviation of peak strain times [2DS-SD18]) was studied, and their association with long-term reverse remodelling were determined. Results: CRT induced acute and ongoing recoordination (ISF from 45 ± 18 to 27 ± 11 and 23 ± 12%, p < 0.001; SRS from 2.27 ± 1.33 to 0.74 ± 0.50 and 0.71 ± 0.43%, p < 0.001) and improved LV function (dP/dtmax 668 ± 185 vs. 817 ± 198 mmHg/s, p < 0.001; stroke volume 46 ± 15 vs. 54 ± 20 and 52 ± 16 ml; LVEF 19 ± 7 vs. 23 ± 8 and 27 ± 10%, p < 0.001). Acute recoordination related to reverse remodelling (r = 0.601 and r = 0.765 for ISF & SRSlv, respectively, p < 0.001). Acute functional improvements of LV systolic function however, neither related to reverse remodelling nor to the extent of acute recoordination. Conclusion: Long-term reverse remodelling after CRT is likely determined by (acute) recoordination rather than by acute hemodynamic improvements. Discoordination may therefore be a more important CRT-substrate that can be assessed and, acutely restored.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Sadaba Cipriain ◽  
A.M Navarro Echeverria ◽  
C.R Tiraplegui Garjon ◽  
A Garcia De La Pena Urtasun ◽  
V Arrieta Paniagua ◽  
...  

Abstract Introduction Adipose tissue is a common constituent of the heart and it is located, without great clinical relevance, frequently in the pericardium. The presence of adipose tissue in the aortic valve is rare, with unknown significance on valve structural properties and function. Aortic regurgitation (AR) is the third most prevalent valve disease, although it is uncommon to find it in isolation. Myxoid degeneration may be the cause or result of AR, although the pathophysiology remains poorly understood. Purpose To describe and characterize the presence of adipose tissue in the aortic valves from a cohort of AR patients. Methods 116 patients undergoing aortic valve replacement due to severe AR were enrolled. We classified them in two groups according to the histological results showing presence or absence of adipose tissue in the aortic valves. In the valve tissue molecular analysis were performed by RT-PCR, Western Blot and ELISA to analyze markers of adipocytes (leptin, adiponectin, resistin), inflammation (Rantes, interleukin-6, interleukin-1β), extracellular matrix remodeling (metalloproteinases-1, -2 and -9), proteoglycans (aggrecan, hyaluronan, lumican, syndecan-1, decorin) and fibrosis (collagens, fibronectin). Results Adipose tissue was found in 63% of the aortic valves analyzed. Baseline characteristics (age, hypertension, dyslipidemia, diabetes, smoking, left ventricular telediastolic diameter, left ventricular systolic function, ascending aorta) were similar in patients presenting valve adipose tissue as compared with patients without valve adipose tissue. Valves containing adipocytes exhibited a higher leptin content (p&lt;0.001), fibronectin (p&lt;0.01), decorin (p&lt;0,0001), hyaluronan (p=0.03), aggrecan (p=0.04) and metalloproteinase 1 (p=0.03). Interestingly, the presence of adipocytes in the valve was positively correlated with valve thickness measured by echocardiogram (Pearson chi2 statistical significance = 26.3345 p&lt;0.001). Conclusion To our knowledge, this is the first study that describes the presence of adipose cells in aortic valves from a cohort of AR patients. Aortic valves containing adipocytes were thicker and exhibited significant higher levels of proteoglycans, suggesting that adipocytes could contribute to the myxomatous degeneration process. Our results propose that the valve adipose tissue could play a role in the pathophysiology of AR. Funding Acknowledgement Type of funding source: Public hospital(s). Main funding source(s): Gobierno de Navarra


2020 ◽  
Vol 9 (4) ◽  
pp. 1043 ◽  
Author(s):  
Pei-Hsun Sung ◽  
Yi-Chen Li ◽  
Mel S. Lee ◽  
Hao-Yi Hsiao ◽  
Ming-Chun Ma ◽  
...  

This phase II randomized controlled trial tested whether intracoronary autologous CD34+ cell therapy could further improve left ventricular (LV) systolic function in patients with diffuse coronary artery disease (CAD) with relatively preserved LV ejection fraction (defined as LVEF >40%) unsuitable for coronary intervention. Between December 2013 and November 2017, 60 consecutive patients were randomly allocated into group 1 (CD34+ cells, 3.0 × 107/vessel/n = 30) and group 2 (optimal medical therapy; n = 30). All patients were followed for one year, and preclinical and clinical parameters were compared between two groups. Three-dimensional echocardiography demonstrated no significant difference in LVEF between groups 1 and 2 (54.9% vs. 51.0%, respectively, p = 0.295) at 12 months. However, compared with baseline, 12-month LVEF was significantly increased in group 1 (p < 0.001) but not in group 2 (p = 0.297). From baseline, there were gradual increases in LVEF in group 1 compared to those in group 2 at 1-month, 3-months, 6-months and 12 months (+1.6%, +2.2%, +2.9% and +4.6% in the group 1 vs. −1.6%, −1.5%, −1.4% and −0.9% in the group 2; all p < 0.05). Additionally, one-year angiogenesis (2.8 ± 0.9 vs. 1.3 ± 1.1), angina (0.4 ± 0.8 vs. 1.8 ± 0.9) and HF (0.7 ± 0.8 vs. 1.8 ± 0.6) scores were significantly improved in group 1 compared to those in group 2 (all p < 0.001). In conclusion, autologous CD34+ cell therapy gradually and effectively improved LV systolic function in patients with diffuse CAD and preserved LVEF who were non-candidates for coronary intervention (Trial registration: ISRCTN26002902 on the website of ISRCTN registry).


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Akshar Jaglan ◽  
Sarah Roemer ◽  
Ana C Perez Moreno ◽  
Bijoy K Khandheria

Introduction: Myocardial work is a novel parameter that can be used in a clinic setting to assess left ventricular (LV) pressures and deformation. This study sought to distinguish patterns of global myocardial work index in hypertensive vs. non-hypertensive patients. Methods: Fifty (25 male, mean age 60±14 years) hypertensive patients and 15 (7 male, mean age 38±12 years) control patients underwent transthoracic echocardiography at rest. Hypertensive patients were divided into stage 1 (26 patients) and stage 2 (24 patients) based on the 2017 American College of Cardiology guidelines. We excluded patients with suboptimal image quality for myocardial deformation analysis, reduced ejection fraction (EF), valvular heart disease, and arrhythmia. Global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) were estimated from LV pressure strain loops utilizing proprietary software from speckle-tracking echocardiography. LV systolic and diastolic pressures were estimated using a noninvasive brachial artery cuff. Results: Global longitudinal strain (GLS) and EF were preserved between the two groups with no statistically significant difference whereas there was a statistically significant difference in the GWI (p<0.01), GCW (p=0.03), GWW (p<0.01), and GWE (p=0.03) (Figure and Table). Conclusions: Myocardial work gives us a closer look at the relationship between LV pressure and contractility in settings of increased load dependency whereas LVEF and GLS cannot. We show how myocardial work is an advanced assessment of LV systolic function in hypertensive patients.


Sign in / Sign up

Export Citation Format

Share Document