scholarly journals Right ventricular strain rate during exercise accurately identifies male athletes with right ventricular arrhythmias

Author(s):  
Mathias Claeys ◽  
Guido Claessen ◽  
Piet Claus ◽  
Ruben De Bosscher ◽  
Christoph Dausin ◽  
...  

Abstract Aims Athletes with right ventricular (RV) arrhythmias, even in the absence of desmosomal mutations, may have subtle RV abnormalities which can be unmasked by deformation imaging. As exercise places a disproportionate stress on the right ventricle, evaluation of cardiac function and deformation during exercise might improve diagnostic performance. Methods and results We performed bicycle stress echocardiography in 17 apparently healthy endurance athletes (EAs), 12 non-athletic controls (NAs), and 17 athletes with RV arrhythmias without desmosomal mutations (EI-ARVCs) and compared biventricular function at rest and during low (25% of upright peak power) and moderate intensity (60%). At rest, we observed no differences in left ventricular (LV) or RV function between groups. During exercise, however, the increase in RV fractional area change (RVFAC), RV free wall strain (RVFWSL), and strain rate (RVFWSRL) were significantly attenuated in EI-ARVCs as compared to EAs and NAs. At moderate exercise intensity, EI-ARVCs had a lower RVFAC, RVFWSL, and RVFWSRL (all P < 0.01) compared to the control groups. Exercise-related increases in LV ejection fraction, strain, and strain rate were also attenuated in EI-ARVCs (P < 0.05 for interaction). Exercise but not resting parameters identified EI-ARVCs and RVFWSRL with a cut-off value of >−2.35 at moderate exercise intensity had the greatest accuracy to detect EI-ARVCs (area under the curve 0.95). Conclusion Exercise deformation imaging holds promise as a non-invasive diagnostic tool to identify intrinsic RV dysfunction concealed at rest. Strain rate appears to be the most accurate parameter and should be incorporated in future, prospective studies to identify subclinical disease in an early stage.

2014 ◽  
Vol 1 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Rachel N Lord ◽  
Keith George ◽  
Helen Jones ◽  
John Somauroo ◽  
David Oxborough

This study aimed to establish feasibility for myocardial speckle tracking (MST) and intra-observer reliability of both MST and tissue velocity imaging (TVI)-derived right ventricular (RV) strain (ε) and strain rate (SR) at rest and during upright incremental exercise. RV ε and SR were derived using both techniques in 19 healthy male participants. MST-derived ε and SR were feasible at rest (85% of segments tracked appropriately). Feasibility reduced significantly with progressive exercise intensity (3% of segments tracking appropriately at 90% maximum heart rate (HRmax)). Coefficient of variations (CoVs) of global ε values at rest was acceptable for both TVI and MST (7–12%), with low bias and narrow limits of agreement. Global SR data were less reliable for MST compared with TVI as demonstrated with CoV data (systolic SR=15 and 61%, early diastolic SR=16 and 17% and late diastolic SR=26 and 31% respectively). CoVs of global RV ε and SR obtained at 50% HRmax were acceptable using both techniques. As exercise intensity increased to 70 and 90% HRmax, reliability of ε and SR values reduced with larger variability in MST. We conclude that RV global and regional ε and SR data are feasible, comparable and reliable at rest and at 50% HRmax using both MST and TVI. Reliability was reduced during higher exercise intensities with only TVI acceptable for clinical and scientific use.


2007 ◽  
Vol 24 (7) ◽  
pp. 732-738 ◽  
Author(s):  
Serdar Sevimli ◽  
Fuat Gundogdu ◽  
Enbiya Aksakal ◽  
Sakir Arslan ◽  
Hakan Tas ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
pp. 204589321774450 ◽  
Author(s):  
Junjie Zhang ◽  
Yanan Cao ◽  
Xiaowei Gao ◽  
Maoen Zhu ◽  
Zhong Zhang ◽  
...  

Worsening right ventricular (RV) dysfunction in the presence of pulmonary artery hypertension (PAH) increases morbidity and mortality in this patient population. Transthoracic echocardiography (TTE) is a non-invasive modality to evaluate RV function over time. Using a monocrotaline-induced PAH rat model, we evaluated the effect of acute inflammation on RV function. In this study, both PAH and control rats were injected with Escherichia coli lipopolysaccharide (LPS) to induce an acute inflammatory state. We evaluated survival curves, TTE parameters, and inflammatory markers to better understand the mechanism and impact of acute inflammation on RV function in the presence of PAH. The survival curve of the PAH rats dropped sharply within 9 h after LPS treatment. Several echocardiographic parameters including left ventricular (LV) stroke volume, RV tricuspid annular plane systolic excursion, RV longitudinal peak systolic strain, and strain rate decreased significantly in PAH rats before LPS injection and 2 h after LPS injection. The expression of phospholamban (PLB) and tumor necrosis factor-α (TNF-α) significantly increased and the expression of SERCA2a significantly decreased in PAH rats after LPS administration. LPS suppressed the RV longitudinal peak systolic strain and strain rate and cardiac function deteriorated in PAH rats. These effects may be associated with the signal pathway activity of SERCA2a/PLB.


2021 ◽  
pp. 67-70

Purpose: Nesfatin-1 is known as an energy regulatory hormone. Exercise induced increase in nesfatin-1 levels has been considered as powerful mechanism against metabolic disorders. In this study we evaluated the effects of moderate exercise intensity on serum nesfatin-1 levels in young females. Material and Method: Total of 12 females performed a 45 minutes of running exercise at their 70% of maximal heart rate. Venous blood samples were taken before and after exercise. Muscle activity condition were evaluated using serum creatine kinase levels (CK). Nesfatin-1 levels measured using enzyme linked-immunosorbent assay (ELISA) method. CK level was measured using autoanalyser. Paired t-test was used to analyse data for significance. Results: Nesfatin-1 levels increased from baseline value of 159.9±18 ng/mL to 178.2±20 ng/mL to end of exercise (increase of 11%) (p<0.005). In addition, during exercise CK increased significantly from 115.5±20 U/L to 146.7±28 U/L (p<0.05). During exercise, there was no significant correlation between increase of nesfatin-1 and CK levels. There was a positive correlation between nesfatin-1 and fat mass (R=0.66602, P=0.01). Consequently, moderate intensity aerobic exercise induced muscle strain may cause elevate CK levels and stimulate increase in nesfatin-1 levels. Conclusion: Thus, exercise is an important tool that may have additional effects on energy regulation via affecting nesfatin-1 secretion in young females.


Author(s):  
Matteo Cameli ◽  
Partho Sengupta ◽  
Thor Edvardsen

Echocardiographic strain imaging, also known as deformation imaging, has been developed as a means to objectively quantify regional and global myocardial function. First introduced as a post-processing feature of tissue Doppler imaging velocity converted to strain and strain rate, strain imaging has more recently also been derived from speckle tracking analysis. Tissue Doppler imaging yields velocity information from which strain and strain rate are mathematically derived whereas two-dimensional speckle tracking yields strain information from which strain rate and velocity data are derived. Data obtained from these two different techniques may not be equivalent due to limitations inherent with each technique. Speckle tracking analysis can generate longitudinal, circumferential, and radial strain measurements and left ventricular twist. Although potentially useful, these measurements are also complicated and frequently displayed as difficult-to-interpret waveforms. Strain imaging is now considered a robust research tool and has great potential to play many roles in routine clinical practice. This chapter explains the fundamental concepts of deformation imaging, the technical features of strain imaging using tissue Doppler imaging and speckle tracking, and the strengths and weaknesses of these methods.


2011 ◽  
Vol 57 (14) ◽  
pp. E230
Author(s):  
Brittany D. Payne ◽  
Pamela Silén ◽  
Ju-Feng Hsiao ◽  
Yuki Koshino ◽  
Christopher Molini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document