scholarly journals Upgrade of cardiac resynchronization therapy by utilizing additional His-bundle pacing in a patient with lamine A/C cardiomyopathy: an autopsy case report

Author(s):  
Masako Baba ◽  
Kentaro Yoshida ◽  
Osamu Igawa ◽  
Masayoshi Yamamoto ◽  
Akihiko Nogami ◽  
...  

Abstract Background A number of heart failure patients (HF) do not fully benefit from cardiac resynchronization therapy (CRT). Although His bundle pacing (HBP) have been developed as an alternative strategy, its role for treating advanced cardiomyopathy remains unclear. Case summary We previously reported a patient with lamin A/C cardiomyopathy (Eur Heart J Case Rep. 2020; 4:1-9). He had turned non-response to conventional biventricular pacing (BVP), and an upgrade to CRT combining para-His bundle pacing (HBP) and left ventricular (LV) pacing had markedly improved his HF status. In the present report, we assessed the autopsy and histological findings of this patient. A histological examination of both the LV and right ventricular (RV) apex pacing regions exhibited extensive scarring. Although a distinct conduction system was not identified in the alternative para-HBP region, the RV endocardium had more viable myocytes in this region. Discussion In patients with advanced cardiomyopathy accompanied by extensive fibrosis, RV apex pacing, delivered from scar tissue, can render conventional BVP ineffective. Additionally, HBP alone can not provide adequate resynchronization under the presence of diffuse injury of the His-Purkinje system. In these circumstances, combined para-HB and LV pacing may facilitate electrical and mechanical resynchronization of the ventricles and may be attributed to favourable CRT response in advanced HF, even if para-HBP fails to directly capture the conduction system.

Heart Rhythm ◽  
2018 ◽  
Vol 15 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Parikshit S. Sharma ◽  
Gopi Dandamudi ◽  
Bengt Herweg ◽  
David Wilson ◽  
Rajeev Singh ◽  
...  

Heart Rhythm ◽  
2015 ◽  
Vol 12 (7) ◽  
pp. 1548-1557 ◽  
Author(s):  
Daniel L. Lustgarten ◽  
Eric M. Crespo ◽  
Irina Arkhipova-Jenkins ◽  
Robert Lobel ◽  
Joseph Winget ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 555-558
Author(s):  
Domenic Pascual ◽  
Matthias Heinke ◽  
Reinhard Echle ◽  
Johannes Hörth

AbstractA disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients with reduction of the left ventricular ejection fraction, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His-bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His-Bundle-Pacing. Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. The non-responder rate of the CRT therapy is about one third of the CRT patients. His- Bundle-Pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His-bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the Hisbundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1,5 V in combination with a pacing pulse duration of 1 ms. Compared to conventional pacemaker pacing, His-bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His-bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.


Sign in / Sign up

Export Citation Format

Share Document