The first sequenced Sphaerotilus natans bacteriophage– characterization and potential to control its filamentous bacterium host

2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Rute Ferreira ◽  
Rui Amado ◽  
Jorge Padrão ◽  
Vânia Ferreira ◽  
Nicolina M Dias ◽  
...  

ABSTRACT Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.

2019 ◽  
Vol 79 (7) ◽  
pp. 1406-1416 ◽  
Author(s):  
Niansi Fan ◽  
Min Yang ◽  
Simona Rossetti ◽  
Caterina Levantesi ◽  
Rong Qi

Abstract Microthrix parvicella is a filamentous bacterium that frequently causes severe bulking events in wastewater treatment plants (WWTPs) worldwide. In this study, sludge properties and dynamics of filamentous bacteria in a Beijing WWTP seasonally suffering from M. parvicella bulking were continuously monitored over a duration of 15 months, and the correlations between M. parvicella and operating parameters were evaluated. The predominance of M. parvicella was observed at low temperatures (14–18.8 °C) with the relative abundance of around 30% (estimated by both qPCR and FISH analysis). Using micromanipulation technology, 545 filaments of M. parvicella were micromanipulated from bulking sludge (SVI > 180 mL g−1) on six different media. After 3-month purification and enrichment, six strains, phylogenetically closely related to Candidatus Microthrix parvicella, were successfully acquired on R2A medium (20 °C) in pure cultures. Considering the limitation and extremely slow growth rate of M. parvicella filaments, newly isolated strains represent valuable sources for further investigations on the physiology and behavior of this filamentous bacterium, with the focus on the establishment of bulking control strategy.


1994 ◽  
Vol 29 (7) ◽  
pp. 229-237 ◽  
Author(s):  
J. Kruit ◽  
F. Boley ◽  
L. J. A. M. Jacobs ◽  
T. W. M. Wouda

Influent characterization and biosorption experiments were carried out with settled influent of seven wastewater treatment plants to study the influence of O2 in the selector in relation to the success of developing good settling properties of the sludge. In previous years working selectors were installed and/or pilot plant research was carried out at these wastewater treatment plants. Characterization of the influent was done with help of standard COD and BOD measurements with help of a coarse filter. The research has elucidated that the presence of O2 in the selector, at initial sludge loadings of 3.5-6.5 kg BOD/kg MLSS.d, is important for producing good settling properties of the sludge when the sum of readily biodegradable COD and rapidly hydrolysable COD is greater than 40%. When the sum of sludge COD and slow hydrolysable COD is greater than 50% an unaerated selector can be used.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
T. S. C. Quintão ◽  
F. G. Silva ◽  
A. L. Pereira ◽  
W. N. Araújo ◽  
P. M. Oliveira ◽  
...  

AbstractHuman enteric viruses, such as enteric adenoviruses (HAdV), are known to be involved with gastrointestinal disorders, especially acute gastroenteritis. Several studies have used HAdV as an indicator of water quality, since they are considered highly stable and widely distributed viruses in water matrices. The aim of this study was to detect and genotype HAdVs in water matrices impacted by discharges of treated effluents from wastewater treatment plants (WWTPs). Wastewater treatment plants from the sanitary system of the Brazilian Federal District were assessed in 2018 and 2019. Samples were collected upstream and downstream from discharge points for each WWTP. Viral concentration based on adsorption-elution and conventional PCR was used for molecular detection, and positive samples were sequenced for phylogenetic analysis. Pluviosity data for the period in which the samples were collected were obtained. Our results demonstrated the presence of HAdVs in 27.2% (61/224) of the samples. The positivity was significantly higher in downstream samples compared to upstream. Moreover, the HAdV positivity was higher in downstream samples collected from receiving water bodies impacted by secondary-level WWTPs in comparison with those impacted by tertiary-level WWTPs. Phylogenetic analysis demonstrated the presence of genotypes 40 and 41, with prevalence of HAdV genotype 41. Despite the predominance of HAdV-41, an increasing frequency of the HAdV-40 was associated with higher pluviosity. In conclusion, this study is the first documentation in the Brazilian Federal District dealing with the prevalence and diversity of HAdVs in several WWTP, along with their correlation with rainfall index.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


2003 ◽  
Vol 33 (3) ◽  
pp. 529-542
Author(s):  
Olfat El-Sebaie ◽  
Ahmed Hussein ◽  
Mohamed Ramadan ◽  
Magda Abd El-Atty ◽  
Helaly Helaly

1998 ◽  
Vol 38 (1) ◽  
pp. 303-310 ◽  
Author(s):  
V. Naidoo ◽  
V. Urbain ◽  
C. A. Buckley

Denitrification kinetics and wastewater characterization of eight different plants in Europe are discussed. Denitrification batch tests revealed three distinct rates except in the cases of Plaisir, Rostock and Orense where 4 rates were observed. The latter three plants revealed atypical rapid initial rates which were between 7 and 21 mgN/gVSS.h. All denitrification kinetics under non-limiting carbon conditions revealed fast first rates which ranged between 3.0 and 7.3 mgN/gVSS.h. Acetate was used to simulate denitrification kinetics with readily biodegradable COD present. Two subsequent rates were observed. Rates 2 and 3 ranged between 2 and 3 mgN/gVSS.h, and 1 and 2 mgN/gVSS.h, respectively. The RBCOD fraction varied between 10 and 19%, except for one of the plants where the value determined was 7%.


2018 ◽  
Vol 78 (7) ◽  
pp. 1517-1524 ◽  
Author(s):  
Riqiang Li ◽  
Jianxing Wang ◽  
Hongjiao Li

Abstract As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.


Sign in / Sign up

Export Citation Format

Share Document