scholarly journals Dietary Fiber in Plant Cell Walls—The Healthy Carbohydrates

Author(s):  
Yi An ◽  
Weitai Lu ◽  
Wenze Li ◽  
Langlang Pan ◽  
Mengzhu Lu ◽  
...  

Abstract Dietary fiber (DF) is one of the major classes of nutrients for humans. It is widely distributed in the edible parts of natural plants, with the cell wall being the main DF-containing structure. The DF content varies significantly in different plant species and organs, and the processing procedure can have a dramatic effect on the DF composition of plant-based foods. Given the considerable nutritional value of DF, a deeper understanding of DF in food plants, including its composition and biosynthesis, is fundamental to the establishment of a daily intake reference of DF and is also critical to molecular breeding programs for modifying DF content. In the past decades, plant cell wall biology has seen dramatic progress, and such knowledge is of great potential to be translated into DF-related food science research and may provide future research directions for improving the health benefits of food crops. In this review, to spark interdisciplinary discussions between food science researchers and plant cell wall biologists, we focus on a specific category of DF—cell wall carbohydrates. We first summarize the content and composition of carbohydrate DF in various plant-based foods, and then discuss the structure and biosynthesis mechanism of each carbohydrate DF category, in particular the respective biosynthetic enzymes. Health impacts of DF are highlighted, and finally, future directions of DF research are also briefly outlined.

Author(s):  
Venkatasubramanian Sivakumar

Background: In the growing environmental concern use of natural products, efficient processes and devices are necessary. Solid-Liquid extraction of active Ingredients from Plant materials is one of the important unit operations in Chemical Engineering and need to be enhanced. Objectives: Since, these active ingredients are firmly bound to the plant cell wall membrane, which pose mass-transfer resistance and need to get detached through the use of suitable process intensification tools such as ultrasound and suitable devices. Therefore, detailed analysis and review is essential on development made in this area through Publications and Patents. Hence, the present paper illustrates the development of ultrasound assisted device for solid-liquid extraction are presented in this paper. Methods: Advantages such as % Yield, Reduction in extraction time, use of ambient conditions, better process control, avoidance or minimizing multi stage extraction could be achieved due to the use of ultrasound in extraction as compared to conventional processes. Conclusions: Use of ultrasound to provide significant improvements in the extraction of Vegetable tannins, Natural dyes for application in Leather processing has been demonstrated and reported earlier. These enhancement could be possible through various effects of ultrasound such as better flow of solvents through micro-jet formation, mass transfer enhancement due to rupture of plant cell wall membranes through acoustic cavitation, better leaching due to micro-mixing and acoustic streaming effects. This approach would minimize material wastage; thereby, leading to eco-conservation of plant materials, which is very much essential for better environment. Hence, various methods and design for application of ultrasound assisted solid-liquid extractor device are necessary.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Sugiura ◽  
Ayumi Nagase ◽  
Sayoko Oiki ◽  
Bunzo Mikami ◽  
Daisuke Watanabe ◽  
...  

Abstract Saprophytic bacteria and plants compete for limited nutrient sources. Bacillus subtilis grows well on steamed soybeans Glycine max to produce the fermented food, natto. Here we focus on bacterial responses in conflict between B. subtilis and G. max. B. subtilis cells maintained high growth rates specifically on non-germinating, dead soybean seeds. On the other hand, viable soybean seeds with germinating capability attenuated the initial growth of B. subtilis. Thus, B. subtilis cells may trigger saprophytic growth in response to the physiological status of G. max. Scanning electron microscope observation indicated that B. subtilis cells on steamed soybeans undergo morphological changes to form apertures, demonstrating cell remodeling during saprophytic growth. Further, transcriptomic analysis of B. subtilis revealed upregulation of the gene cluster, yesOPQR, in colonies growing on steamed soybeans. Recombinant YesO protein, a putative, solute-binding protein for the ATP-binding cassette transporter system, exhibited an affinity for pectin-derived oligosaccharide from plant cell wall. The crystal structure of YesO, in complex with the pectin oligosaccharide, was determined at 1.58 Å resolution. This study expands our knowledge of defensive and offensive strategies in interspecies competition, which may be promising targets for crop protection and fermented food production.


Sign in / Sign up

Export Citation Format

Share Document