scholarly journals The Common Marmoset: A Highly Translatable Small Nonhuman Primate Model of Aging

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 412-412
Author(s):  
Ricki Colman

Abstract The common marmoset (Callithrix jacchus) has been used in biomedical research for many years, but within the last decade its popularity has increased dramatically prompted to a large degree by their realized utility for neuroscience and aging research. Many factors make the marmoset an attractive model system including their genetic and physiological similarity to humans, relatively short lifespan (average of ~13 years, maximum of ~20 years), high fertility (highest of any primate, routine production of 2-3 offspring every 5-6 months), rapid development (reproductively competent by ~1.5 years of age, aged by 7-8 years of age), small size (~400 grams), human-like social structure consisting of cooperative breeding with shared parenting responsibilities, and lack of zoonotic diseases of concern to humans. Marmosets share ~93% sequence identity with the human genome and they develop similar age-related conditions as humans. Marmosets may strike the perfect balance between similarity to humans and abbreviated aging course.

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S104-S104
Author(s):  
Dennis M Minton ◽  
Angela J Marolf ◽  
Kelly S Santangelo ◽  
Adam B Salmon ◽  
Adam R Konopka

Abstract Age is a primary risk factor for osteoarthritis (OA). The mechanisms that contribute to OA are poorly understood and disease modifying treatments have not been identified. A critical shortcoming in developing therapies is the limited number of translational models available to identify the causes of naturally occurring OA. Our goal is to use the common marmoset as a non-human primate (NHP) model of age-related OA. NHP are the closest evolutionary relative to humans and share many characteristics of human aging. The marmoset has advantages over other NHP for aging research because of their relatively short maximal lifespan and small size. Micro-computed tomography (uCT) was performed on whole-knee joints obtained from young (10 yrs, n=3) marmosets at necropsy. OA was evaluated using a clinical uCT scoring system and quantitative assessments of subchondral bone structure and ossified meniscal volume. Advancing age was positively correlated to increased uCT OA score (p<0.05, r=0.59 ), mainly through increased number and size of osteophytes and progressive subchondral bone sclerosis from the medial to both medial and lateral compartments. For marmosets displaying meniscal ossification, older marmosets had greater (p<0.05) ossified meniscal volume than middle-aged and younger marmosets, respectively. Trabecular (p=0.05) and cortical bone thickness (p<0.05) were also lower in older marmosets. These data are the first to indicate that the marmoset develops naturally occurring, age-related OA and support the pursuit of additional studies using the marmoset to identify OA mechanisms and test potential interventions.


2019 ◽  
Vol 93 (2-3) ◽  
pp. 92-107 ◽  
Author(s):  
Todd M. Preuss

The common marmoset, a New World (platyrrhine) monkey, is currently being fast-tracked as a non-human primate model species, especially for genetic modification but also as a general-purpose model for research on the brain and behavior bearing on the human condition. Compared to the currently dominant primate model, the catarrhine macaque monkey, marmosets are notable for certain evolutionary specializations, including their propensity for twin births, their very small size (a result of phyletic dwarfism), and features related to their small size (rapid development and relatively short lifespan), which result in these animals yielding experimental results more rapidly and at lower cost. Macaques, however, have their own advantages. Importantly, macaques are more closely related to humans (which are also catarrhine primates) than are marmosets, sharing approximately 20 million more years of common descent, and are demonstrably more similar to humans in a variety of genomic, molecular, and neurobiological characteristics. Furthermore, the very specializations of marmosets that make them attractive as experimental subjects, such as their rapid development and short lifespan, are ways in which marmosets differ from humans and in which macaques more closely resemble humans. These facts warrant careful consideration of the trade-offs between convenience and cost, on the one hand, and biological realism, on the other, in choosing between non-human primate models of human biology. Notwithstanding the advantages marmosets offer as models, prudence requires continued commitment to research on macaques and other primate species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Takahiko Noro ◽  
Kazuhiko Namekata ◽  
Atsuko Kimura ◽  
Yuriko Azuchi ◽  
Nanako Hashimoto ◽  
...  

Abstract The common marmoset (Callithrix jacchus) is a non-human primate that provides valuable models for neuroscience and aging research due to its anatomical similarities to humans and relatively short lifespan. This study was carried out to examine whether aged marmosets develop glaucoma, as seen in humans. We found that 11% of the aged marmosets presented with glaucoma-like characteristics; this incident rate is very similar to that in humans. Magnetic resonance imaging showed a significant volume loss in the visual cortex, and histological analyses confirmed the degeneration of the lateral geniculate nuclei and visual cortex in the affected marmosets. These marmosets did not have elevated intraocular pressure, but showed an increased oxidative stress level, low cerebrospinal fluid (CSF) pressure, and low brain-derived neurotrophic factor (BDNF) and TrkB expression in the retina, optic nerve head and CSF. Our findings suggest that marmosets have potential to provide useful information for the research of eye and the visual system.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S8-S9
Author(s):  
Suzette Tardif ◽  
Corinna Ross

Abstract Interest in the New World Monkey, the common marmoset, as a nonhuman primate aging model is growing. Because marmosets have a fast maturation and short life span compared with more commonly used Old World monkey models, the aging research community began to explore the potential of this model species. In addition, the relative ease with which marmosets can be bred in a barrier environment enhances their value as a life-span model. Since that time, efforts to better define what aging actually looks like in marmosets has intensified. Important findings of the past decade include: (1) a refined definition of lifespan in this species and what affects age-specific survival; (2) assessments of age-related pathological changes; (3) development of functional phenotyping relevant to aging, such as activiyy, strength, body composition, cytokine profiling; (4) support of studies using the marmoset as a preclinical model to test intervention that may modulate the aging process.


2019 ◽  
Vol 5 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Corinna N. Ross ◽  
Adam B. Salmon

2003 ◽  
Vol 31 (1_suppl) ◽  
pp. 123-127 ◽  
Author(s):  
U. Zühlke ◽  
G. Weinbauer

The common marmoset, Callithrix jacchus, is the smallest nonhuman primate commonly used in biomedical research. Marmoset characteristics and propensities have enabled them to be used in a wide range of research as a model of human disease, physiology, drug metabolism, general toxicology, and reproductive biology. This paper provides a general overview of the marmoset with special emphasis on the benefits and disadvantages of this species as a model for inclusion in preclinical drug development programmes. In view of its small size in comparison with other nonrodent species marmosets have become of value for toxicology studies with biotechnology products where compound supply is limited. In general toxicology studies, marmosets have been successfully used to meet regulatory endpoints also for specific investigatory purposes. The widespread use of this species has allowed extensive background information to become available and a summary of the most frequently measured parameters are presented. Marmosets apparently represent an interesting animal model for comparative research on primate reproductive physiology. However, several basic aspects of reproductive processes exhibit cardinal discrepancies to those described for macaques and human. Thus, from the viewpoint of reproductive toxicology, the relevance of the marmoset primate model for human reproduction remains unclear to date and further research is obviously needed. Given our current knowledge of marmoset reproductive features, the use of this animal model cannot be recommended for reproductive toxicology assessment.


2013 ◽  
Vol 81 (8) ◽  
pp. 2909-2919 ◽  
Author(s):  
Laura E. Via ◽  
Danielle M. Weiner ◽  
Daniel Schimel ◽  
Philana Ling Lin ◽  
Emmanuel Dayao ◽  
...  

ABSTRACTExisting small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains ofMycobacterium tuberculosisof various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, andM. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with variousM. tuberculosisstrain clades.


2019 ◽  
Author(s):  
Janahan Selvanayagam ◽  
Kevin D. Johnston ◽  
David J. Schaeffer ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

AbstractThe frontal eye field (FEF) is a critical region for the deployment of overt and covert spatial attention. While investigations in the macaque continue to provide insight into the neural underpinnings of the FEF, due to its location within a sulcus the macaque FEF is virtually inaccessible to electrophysiological techniques such as high-density and laminar recordings. With a largely lissencephalic cortex, the common marmoset (Callithrix jacchus) is a promising alternative primate model for studying FEF microcircuitry. Putative homologies have been established with the macaque FEF on the basis of cytoarchitecture and connectivity, however physiological investigation in awake, behaving marmosets is necessary to physiologically locate this area. Here we addressed this gap using intracortical microstimulation in a broad range of frontal cortical areas in marmosets. We implanted marmosets with 96-channel Utah arrays and applied microstimulation trains while they freely viewed video clips. We evoked short-latency fixed vector saccades at low currents (<50 μA) in areas 45, 8aV, 8C and 6DR. We observed a topography of saccade direction and amplitude consistent with findings in macaques and humans; we observed small saccades in ventrolateral FEF and large saccades combined with contralateral neck and shoulder movements encoded in dorsomedial FEF. Our data provide compelling evidence supporting homology between marmoset and macaque FEF and suggest the marmoset is a useful primate model for investigating FEF microcircuitry and its contributions to oculomotor and cognitive functions.Significance StatementThe frontal eye field (FEF) is a critical cortical region for overt and covert spatial attention. The microcircuitry of this area remains poorly understood, as in the macaque, the most commonly used model, it is embedded within a sulcus and is inaccessible to modern electrophysiological and optical imaging techniques. The common marmoset is a promising alternative primate model due to its lissencephalic cortex and potential for genetic manipulation. However, evidence for homologous cortical areas in this model remains limited and unclear. Here we applied microstimulation in frontal cortical areas in marmosets to physiologically identify the FEF. Our results provide compelling evidence for a frontal eye field in the marmoset, and suggest that the marmoset is a useful model for FEF microcircuitry.


Sign in / Sign up

Export Citation Format

Share Document