scholarly journals VACCINATION TO PROMOTE HEALTH THROUGHOUT LIFE AS A HEALTHY AGING STRATEGY

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S211-S211
Author(s):  
Leonard Friedland

Abstract This symposium addresses the role of vaccination to promote healthy aging, the process of developing and maintaining the functional ability that enables wellbeing in older age. Life-span immunization of adults across all age categories can help to reduce morbidity and mortality. Healthy aging is critical for our global society to counter the surge in healthcare costs that is coming as a result of the demographic shift to older age. Immune system function and response to vaccination declines with advancing age. Generating effective immune responses against new infectious disease targets can be difficult in older individuals. Important progress has been made in understanding the mechanisms underlying immunosenescence, the age-related decline of the immune response to infections and vaccinations. Innovative research and the development of new technologies, such as adjuvants, substances that can enhance and shape the immune response to the target antigen(s), has facilitated the development of vaccines specially tailored for adults. This evidence-based approach to the development of innovative vaccines addressing immunosenescence is an important clinically relevant healthy aging strategy to promote health throughout life.

2017 ◽  
Vol 284 (1850) ◽  
pp. 20170125 ◽  
Author(s):  
Imroze Khan ◽  
Deepa Agashe ◽  
Jens Rolff

Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response.


2016 ◽  
Author(s):  
Imroze Khan ◽  
Deepa Agashe ◽  
Jens Rolff

ABSTRACTAge-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase (PO), an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage, in turn accelerating aging. In support of this hypothesis, we found that RNAi knockdown of PO transcripts in young adults reduced inflammation-induced autoreactive tissue damage to Malpighian tubules, and increased adult lifespan. Our work thus provides empirical evidence for a causative link between immunopathological costs of early life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, they displayed exacerbated immunopathological costs and higher post-infection mortality. RNAi-mediated knockdown of PO response reduced immunopathology in older beetles and increased their lifespan after infection. This is the first demonstration of a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of immunopathology under diverse contexts of aging and immune response.


2016 ◽  
Vol 9 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Upasana Shokal ◽  
Ioannis Eleftherianos

Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1726-1730
Author(s):  
KA Melez ◽  
LF Fries ◽  
BS Bender ◽  
T Quinn ◽  
MM Frank

Decreased immune functions have been suggested as a cause for the increased incidence of autoimmunity, malignancy, and infection in the elderly population. To assess the possible role of changes in macrophage function in the aging process we studied the Fc receptor- mediated clearance of IgG-coated erythrocytes in 56 healthy normal volunteers by following the removal of radiolabeled autologous erythrocytes. An age-related decrease in Fc-mediated clearance rates in both female and male subjects was found, which suggests a physiological decline of this macrophage function in older individuals.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-25
Author(s):  
Iwona Kusz vel Sobczuk ◽  
Anna Święch

Aim: The aim of the article was to discuss the role of balanced supplementation in diet of age-related macular degeneration patients. Methods: This review was carried out using comprehensive and systematic literature reports on the role of supplementation of vitamin D, vitamin C, vitamin E, vitamin B6, vitamin B12, zinc, lutein, zeaxanthin, omega-3 acid and folic acid in the prevention of AMD. Results: Vitamins, minerals and carotenoids are essential for the proper retinal function over an inflammation and immune response modulation. Conclusions: Vitamins, minerals and carotenoids discussed in the article have anti-inflammatory and antioxidative properties in the management of AMD progression. Accordingly, it is relevant to assure the appropriate level of these nutrients in a diet of AMD patients.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
Matthew A Andersson ◽  
Lindsay R Wilkinson ◽  
Markus H Schafer

Abstract Though the risk of chronic disease and disability accelerates once adults are in their 60s, 70s, and 80s, researchers have long suspected that economic, social, and institutional variation — even among high-income Western nations — may powerfully influence the likelihood that people remain healthy at advanced ages. This study builds on comparative research into global aging, by offering a multiple-indicator test of whether national healthcare quality modifies the association between age and major illness. Recent individual-level data on morbidity among respondents aged 50 or older (16 countries; 2014 European Social Survey) are merged with nation-level healthcare indicators. Healthcare quality is assessed using a subjective, evaluation-based approach (based on the 2011 International Social Survey Programme) and an objective, attributable-mortality approach (2010 Healthcare Access and Quality, based on the Global Burden of Disease Study). Lagged nation-level economic and health indicators are controlled to help isolate healthcare effects. Multilevel logistic and linear regression models of any major health condition and morbidity reveal that while older individuals showed approximately a 10% reduction in probability of major illness when residing in countries with higher healthcare quality, associations between age and morbidity indices combining number and severity of illness showed greater modification by healthcare quality, with reductions around 18%. Results across subjective and objective approaches to healthcare quality are strikingly consistent. Taken together, results are suggestive of healthcare’s protective role in reducing age-related illness and disability. Future research should illuminate pathways by which healthcare quality may lead to differences in healthy aging among advanced nations.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1801 ◽  
Author(s):  
Bee Ling Tan ◽  
Mohd Esa Norhaizan

Despite an increase in life expectancy that indicates positive human development, a new challenge is arising. Aging is positively associated with biological and cognitive degeneration, for instance cognitive decline, psychological impairment, and physical frailty. The elderly population is prone to oxidative stress due to the inefficiency of their endogenous antioxidant systems. As many studies showed an inverse relationship between carotenoids and age-related diseases (ARD) by reducing oxidative stress through interrupting the propagation of free radicals, carotenoid has been foreseen as a potential intervention for age-associated pathologies. Therefore, the role of carotenoids that counteract oxidative stress and promote healthy aging is worthy of further discussion. In this review, we discussed the underlying mechanisms of carotenoids involved in the prevention of ARD. Collectively, understanding the role of carotenoids in ARD would provide insights into a potential intervention that may affect the aging process, and subsequently promote healthy longevity.


2016 ◽  
Vol 34 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Anna Maria Mello ◽  
Giulia Paroni ◽  
Julia Daragjati ◽  
Alberto Pilotto

Studies on populations at different ages have shown that after birth, the gastrointestinal (GI) microbiota composition keeps evolving, and this seems to occur especially in old age. Significant changes in GI microbiota composition in older subjects have been reported in relation to diet, drug use and the settings where the older subjects are living, that is, in community nursing homes or in a hospital. Moreover, changes in microbiota composition in the old age have been related to immunosenescence and inflammatory processes that are pathophysiological mechanisms involved in the pathways of frailty. Frailty is an age-related condition of increased vulnerability to stresses due to the impairment in multiple inter-related physiologic systems that are associated with an increased risk of adverse outcomes, such as falls, delirium, institutionalization, hospitalization and death. Preliminary data suggest that changes in microbiota composition may contribute to the variations in the biological, clinical, functional and psycho-social domains that occur in the frail older subjects. Multidimensional evaluation tools based on a Comprehensive Geriatric Assessment (CGA) have demonstrated to be useful in identifying and measuring the severity of frailty in older subjects. Thus, a CGA approach should be used more widely in clinical practice to evaluate the multidimensional effects potentially related to GI microbiota composition of the older subjects. Probiotics have been shown to be effective in restoring the microbiota changes of older subjects, promoting different aspects of health in elderly people as improving immune function and reducing inflammation. Whether modulation of GI microbiota composition, with multi-targeted interventions, could have an effect on the prevention of frailty remains to be further investigated in the perspective of improving the health status of frail ‘high risk' older individuals.


Author(s):  
YuShuang Xu ◽  
XiangJie Liu ◽  
XiaoXia Liu ◽  
Di Chen ◽  
MengMeng Wang ◽  
...  

Frailty is a major public issue that affects the physical health and quality of life of older adults, especially as the population ages. Chronic low-grade inflammation has been speculated to accelerate the aging process as well as the development of age-related diseases such as frailty. Intestinal homeostasis plays a crucial role in healthy aging. The interaction between the microbiome and the host regulates the inflammatory response. Emerging evidence indicates that in older adults with frailty, the diversity and composition structure of gut microbiota are altered. Age-associated changes in gut microbiota composition and in their metabolites contribute to increased gut permeability and imbalances in immune function. In this review, we aim to: identify gut microbiota changes in the aging and frail populations; summarize the role of chronic low-grade inflammation in the development of frailty; and outline how gut microbiota may be related to the pathogenesis of frailty, more specifically, in the regulation of gut-derived chronic inflammation. Although additional research is needed, the regulation of gut microbiota may represent a safe, easy, and inexpensive intervention to counteract the chronic inflammation leading to frailty.


Sign in / Sign up

Export Citation Format

Share Document