scholarly journals New constraints on the 1922 Atacama, Chile, earthquake from Historical seismograms

2019 ◽  
Vol 219 (1) ◽  
pp. 645-661 ◽  
Author(s):  
Hiroo Kanamori ◽  
Luis Rivera ◽  
Lingling Ye ◽  
Thorne Lay ◽  
Satoko Murotani ◽  
...  

SUMMARY We recently found the original Omori seismograms recorded at Hongo, Tokyo, of the 1922 Atacama, Chile, earthquake (MS = 8.3) in the historical seismogram archive of the Earthquake Research Institute (ERI) of the University of Tokyo. These recordings enable a quantitative investigation of long-period seismic radiation from the 1922 earthquake. We document and provide interpretation of these seismograms together with a few other seismograms from Mizusawa, Japan, Uppsala, Sweden, Strasbourg, France, Zi-ka-wei, China and De Bilt, Netherlands. The 1922 event is of significant historical interest concerning the cause of tsunami, discovery of G wave, and study of various seismic phase and first-motion data. Also, because of its spatial proximity to the 1943, 1995 and 2015 great earthquakes in Chile, the 1922 event provides useful information on similarity and variability of great earthquakes on a subduction-zone boundary. The 1922 source region, having previously ruptured in 1796 and 1819, is considered to have significant seismic hazard. The focus of this paper is to document the 1922 seismograms so that they can be used for further seismological studies on global subduction zones. Since the instrument constants of the Omori seismographs were only incompletely documented, we estimate them using the waveforms of the observed records, a calibration pulse recorded on the seismogram and the waveforms of better calibrated Uppsala Wiechert seismograms. Comparison of the Hongo Omori seismograms with those of the 1995 Antofagasta, Chile, earthquake (Mw = 8.0) and the 2015 Illapel, Chile, earthquake (Mw = 8.3) suggests that the 1922 event is similar to the 1995 and 2015 events in mechanism (i.e. on the plate boundary megathrust) and rupture characteristics (i.e. not a tsunami earthquake) with Mw = 8.6 ± 0.25. However, the initial fine scale rupture process varies significantly from event to event. The G1 and G2, and R1 and R2 of the 1922 event are comparable in amplitude, suggesting a bilateral rupture, which is uncommon for large megathrust earthquakes.

Author(s):  
Francisco Acuña ◽  
Gonzalo A. Montalva ◽  
Daniel Melnick

Abstract Time-dependent earthquake forecast depends on the frequency and number of past events and time since the last event. Unfortunately, only a few past events are historically documented along subduction zones where forecasting relies mostly on paleoseismic catalogs. We address the role of dating uncertainty and completeness of paleoseismic catalogs on probabilistic estimates of forthcoming earthquakes using a 3.6-ka-long catalog including 11 paleoseismic and 1 historic (Mw≥8.6) earthquakes that preceded the great 1960 Chile earthquake. We set the clock to 1940 and estimate the conditional probability of a future event using five different recurrence models. We find that the Weibull model predicts the highest forecasting probabilities of 44% and 72% in the next 50 and 100 yr, respectively. Uncertainties in earthquake chronologies due to missing events and dating uncertainties may produce changes in forecast probabilities of up to 50%. Our study provides a framework to use paleoseismic records in seismic hazard assessments including epistemic uncertainties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saeko Kita ◽  
Heidi Houston ◽  
Suguru Yabe ◽  
Sachiko Tanaka ◽  
Youichi Asano ◽  
...  

AbstractSlow slip phenomena deep in subduction zones reveal cyclic processes downdip of locked megathrusts. Here we analyze seismicity within a subducting oceanic slab, spanning ~50 major deep slow slip with tremor episodes over 17 years. Changes in rate, b-values, and stress orientations of in-slab seismicity are temporally associated with the episodes. Furthermore, although stress orientations in the slab below these slow slips may rotate slightly, in-slab orientations 20–50 km updip from there rotate farther, suggesting that previously-unrecognized transient slow slip occurs on the plate interface updip. We infer that fluid pressure propagates from slab to interface, promoting episodes of slow slip, which break mineral seals, allowing the pressure to propagate tens of km further updip along the interface where it promotes transient slow slips. The proposed methodology, based primarily on in-slab seismicity, may help monitor plate boundary conditions and slow slip phenomena, which can signal the beginning stages of megathrust earthquakes.


Author(s):  
Whitney M. Behr ◽  
Roland Bürgmann

Deep-seated slow slip and tremor (SST), including slow slip events, episodic tremor and slip, and low-frequency earthquakes, occur downdip of the seismogenic zone of numerous subduction megathrusts and plate boundary strike-slip faults. These events represent a fascinating and perplexing mode of fault failure that has greatly broadened our view of earthquake dynamics. In this contribution, we review constraints on SST deformation processes from both geophysical observations of active subduction zones and geological observations of exhumed field analogues. We first provide an overview of what has been learned about the environment, kinematics and dynamics of SST from geodetic and seismologic data. We then describe the materials, deformation mechanisms, and metamorphic and fluid pressure conditions that characterize exhumed rocks from SST source depths. Both the geophysical and geological records strongly suggest the importance of a fluid-rich and high fluid pressure habitat for the SST source region. Additionally, transient deformation features preserved in the rock record, involving combined frictional-viscous shear in regions of mixed lithology and near-lithostatic fluid pressures, may scale with the tremor component of SST. While several open questions remain, it is clear that improved constraints on the materials, environment, structure, and conditions of the plate interface from geophysical imaging and geologic observations will enhance model representations of the boundary conditions and geometry of the SST deformation process. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.


2021 ◽  
Author(s):  
Saeko Kita ◽  
Heidi Houston ◽  
Suguru Yabe ◽  
Sachiko Tanaka ◽  
Youichi Asano ◽  
...  

Abstract Slow slip phenomena deep in subduction zones reveal cyclic processes downdip of locked megathrusts. Here we analyze seismicity within a subducting oceanic slab under Kii Peninsula, Japan, spanning nearly 50 major deep slow slip and tremor episodes over 17 years. Changes in rate, b-values, and stress orientations of inslab seismicity are temporally associated with the slow slip episodes. Furthermore, although stress orientations in the slab below these slow slips may rotate slightly, inslab orientations 20 to 50 km updip from there rotate significantly, suggesting previously-unrecognized transient slow slip occurs on the plate interface updip. We infer that fluid migrates from slab to interface, promoting episodes of slow slip, which break mineral seals, letting fluid migrate 10’s of km further updip along the interface where it promotes transient slow slips. The proposed methodology, based primarily on inslab seismicity, may help monitor plate boundary conditions and slow slip phenomena, which can signal the beginning stages of megathrust earthquakes.


2020 ◽  
Vol 36 (3) ◽  
pp. 1271-1297
Author(s):  
Kenneth W. Campbell

In this article, I propose a method for estimating the magnitude [Formula: see text] at which subduction megathrust earthquakes are expected to exhibit a break in magnitude scaling of both seismic source dimensions and earthquake ground motions. The methodology is demonstrated by applying it to 79 global subduction zones defined in the literature, including Cascadia. Breakpoint magnitude is estimated from seismogenic interface widths, empirical source scaling relations, and aspect ratios of physically unbounded earthquake ruptures and their uncertainties. The concept stems from the well-established observation that source-dimension and ground motion scaling decreases for shallow continental (primarily strike-slip) earthquakes when rupture exceeds the seismogenic width of the fault. Although a scaling break for megathrust earthquakes is difficult to observe empirically, all of the instrumentally recorded historical [Formula: see text] mega-earthquakes have occurred on subduction zones with [Formula: see text] (8.1–8.9), consistent with an observed break in source scaling relations derived from these same events. The breakpoint magnitudes derived in this study can be used to constrain the magnitude at which the scaling of ground motion is expected to decrease in subduction ground motion prediction equations.


Author(s):  
Musavver Didem Cambaz ◽  
Mehmet Özer ◽  
Yavuz Güneş ◽  
Tuğçe Ergün ◽  
Zafer Öğütcü ◽  
...  

Abstract As the earliest institute in Turkey dedicated to locating, recording, and archiving earthquakes in the region, the Kandilli Observatory and Earthquake Research Institute (KOERI) has a long history in seismic observation, which dates back to the installation of its first seismometers soon after the devastating Istanbul earthquake of 10 July 1894. For over a century, since the deployment of its first seismometer, the KOERI seismic network has grown steadily in time. In this article, we present the KOERI seismic network facilities as a data center for the seismological community, providing data and services through the European Integrated Data Archive (EIDA) and the Rapid Raw Strong-Motion (RRSM) database, both integrated in the Observatories and Research Facilities for European Seismology (ORFEUS). The objective of this article is to provide an overview of the KOERI seismic services within ORFEUS and to introduce some of the procedures that allow to check the health of the seismic network and the quality of the data recorded at KOERI seismic stations, which are shared through EIDA and RRSM.


1992 ◽  
Vol 82 (3) ◽  
pp. 1306-1349 ◽  
Author(s):  
Javier F. Pacheco ◽  
Lynn R. Sykes

Abstract We compile a worldwide catalog of shallow (depth < 70 km) and large (Ms ≥ 7) earthquakes recorded between 1900 and 1989. The catalog is shown to be complete and uniform at the 20-sec surface-wave magnitude Ms ≥ 7.0. We base our catalog on those of Abe (1981, 1984) and Abe and Noguchi (1983a, b) for events with Ms ≥ 7.0. Those catalogs, however, are not homogeneous in seismicity rates for the entire 90-year period. We assume that global rates of seismicity are constant on a time scale of decades and most inhomogeneities arise from changes in instrumentation and/or reporting. We correct the magnitudes to produce a homogeneous catalog. The catalog is accompanied by a reference list for all the events with seismic moment determined at periods longer than 20 sec. Using these seismic moments for great and giant earthquakes and a moment-magnitude relationship for smaller events, we produce a seismic moment catalog for large earthquakes from 1900 to 1989. The catalog is used to study the distribution of moment released worldwide. Although we assumed a constant rate of seismicity on a global basis, the rate of moment release has not been constant for the 90-year period because the latter is dominated by the few largest earthquakes. We find that the seismic moment released at subduction zones during this century constitutes 90% of all the moment released by large, shallow earthquakes on a global basis. The seismic moment released in the largest event that occurred during this century, the 1960 southern Chile earthquake, represents about 30 to 45% of the total moment released from 1900 through 1989. A frequency-size distribution of earthquakes with seismic moment yields an average slope (b value) that changes from 1.04 for magnitudes between 7.0 and 7.5 to b = 1.51 for magnitudes between 7.6 and 8.0. This change in the b value is attributed to different scaling relationships between bounded (large) and unbounded (small) earthquakes. Thus, the earthquake process does have a characteristic length scale that is set by the downdip width over which rupture in earthquakes can occur. That width is typically greater for thrust events at subduction zones than for earthquakes along transform faults and other tectonic environments.


2017 ◽  
Vol 69 (1) ◽  
Author(s):  
Jun Kameda ◽  
Sayako Inoue ◽  
Wataru Tanikawa ◽  
Asuka Yamaguchi ◽  
Yohei Hamada ◽  
...  

2021 ◽  
Author(s):  
Susan Bilek ◽  
Emily Morton

<p>Observations from recent great subduction zone earthquakes highlight the influence of spatial geologic heterogeneity on overall rupture characteristics, such as areas of high co-seismic slip, and resulting tsunami generation.  Defining the relevant spatial heterogeneity is thus important to understanding potential hazards associated with the megathrust. The more frequent, smaller magnitude earthquakes that commonly occur in subduction zones are often used to help delineate the spatial heterogeneity.  Here we provide an overview of several subduction zones, including Costa Rica, Mexico, and Cascadia, highlighting connections between the small earthquake source characteristics and rupture behavior of larger earthquakes.  Estimates of small earthquake locations and stress drop are presented in each location, utilizing data from coastal and/or ocean bottom seismic stations.  These seismicity characteristics are then compared with other geologic and geophysical parameters, such as upper and lower plate characteristics, geodetic locking, and asperity locations from past large earthquakes.  For example, in the Cascadia subduction zone, we find clusters of small earthquakes located in regions of previous seamount subduction, with variations in earthquake stress drop reflecting potentially disrupted upper plate material deformed as a seamount passed.  Other variations in earthquake location and stress drop can be correlated with observed geodetic locking variations. </p>


1988 ◽  
Vol 129 ◽  
pp. 351-352
Author(s):  
Richard Gordon ◽  
Charles Demets ◽  
Seth Stein ◽  
Don Argus ◽  
Dale Woods

The standard against which VLBI measurements of continental drift and plate motions are compared are self-consistent global models of “present-day” plate motions determined from geophysical data: marine magnetic anomalies at oceanic spreading centers, azimuths of transform faults, and orientations of earthquake slip vectors on transform faults and at subduction zones. Past global plate motion models have defined regions where the assumption that plates behave rigidly has apparently lead to systematic misfits, sometimes exceeding 10 mm/yr, of plate motion data. Here, we present some of the results from NUVEL-1, a new, self-consistent global model of present-day relative plate motions determined from a compilation and analysis of existing and new geophysical data. These data and new techniques have allowed us to eliminate nearly all statistically significant systematic misfits identified by earlier models, suggesting that the rigid-plate assumption is an excellent approximation when plate motions are averaged over several million years. Beside improving estimates of the motion on previously identified plate boundaries, we have also identified and determined motions on other boundaries whose subtle morphologies, lack of seismicity, and very slow (< 10 mm/yr) relative motions have made them difficult to detect. Here we focus on the application of VLBI measurements to help resolve plate tectonic problems and then briefly outline our results for Pacific-North America motion and plate motions in the Indian Ocean.


Sign in / Sign up

Export Citation Format

Share Document