scholarly journals A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency

2020 ◽  
Vol 29 (19) ◽  
pp. 3266-3284
Author(s):  
Hilal H Al-Shekaili ◽  
Terri L Petkau ◽  
Izabella Pena ◽  
Tess C Lengyell ◽  
Nanda M Verhoeven-Duif ◽  
...  

Abstract Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1768
Author(s):  
Miroslav Rievaj ◽  
Eva Culková ◽  
Damiána Šandorová ◽  
Zuzana Lukáčová-Chomisteková ◽  
Renata Bellová ◽  
...  

This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.


2021 ◽  
Vol 78 (7) ◽  
pp. 3673-3689
Author(s):  
David Leitsch ◽  
Alvie Loufouma Mbouaka ◽  
Martina Köhsler ◽  
Norbert Müller ◽  
Julia Walochnik

AbstractThe free-living amoeba Acanthamoeba castellanii occurs worldwide in soil and water and feeds on bacteria and other microorganisms. It is, however, also a facultative parasite and can cause serious infections in humans. The annotated genome of A. castellanii (strain Neff) suggests the presence of two different thioredoxin reductases (TrxR), of which one is of the small bacterial type and the other of the large vertebrate type. This combination is highly unusual. Similar to vertebrate TrxRases, the gene coding for the large TrxR in A. castellanii contains a UGA stop codon at the C-terminal active site, suggesting the presence of selenocysteine. We characterized the thioredoxin system in A. castellanii in conjunction with glutathione reductase (GR), to obtain a more complete understanding of the redox system in A. castellanii and the roles of its components in the response to oxidative stress. Both TrxRases localize to the cytoplasm, whereas GR localizes to the cytoplasm and the large organelle fraction. We could only identify one thioredoxin (Trx-1) to be indeed reduced by one of the TrxRases, i.e., by the small TrxR. This thioredoxin, in turn, could reduce one of the two peroxiredoxins tested and also methionine sulfoxide reductase A (MsrA). Upon exposure to hydrogen peroxide and diamide, only the small TrxR was upregulated in expression at the mRNA and protein levels, but not the large TrxR. Our results show that the small TrxR is involved in the A. castellanii’s response to oxidative stress. The role of the large TrxR, however, remains elusive.


Author(s):  
Ichiro Hirahara ◽  
Eiji Kusano ◽  
Denan Jin ◽  
Shinji Takai

Abstract Peritoneal dialysis (PD) is a blood purification treatment for patients with reduced renal function. However, the peritoneum is exposed to oxidative stress during PD and long-term PD results in peritoneal damage, leading to the termination of PD. Methylglyoxal (MGO) contained in commercial PD fluids is a source of strong oxidative stress. The aim of this study was to clarify the mechanism of MGO-induced peritoneal injury using metabolome analysis in rats. We prepared peritoneal fibrosis rats by intraperitoneal administration of PD fluids containing MGO for 21 days. As a result, MGO-induced excessive proliferation of mesenchymal cells with an accumulation of advanced glycation end-products (AGEs) at the surface of the thickened peritoneum in rats. The effluent levels of methionine sulfoxide, an oxidative stress marker and glutathione peroxidase activity were increased in the MGO-treated rats. The levels of glutathione, glutamate, aspartate, ornithine and AGEs were also increased in these rats. MGO upregulated the gene expression of transporters and enzymes related to the metabolism of glutathione, glutamate and ornithine in the peritoneum. These results suggest that MGO may induce peritoneal injury with mesenchymal cell proliferation via increased redox metabolism, directly or through the formation of AGEs during PD.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1875 ◽  
Author(s):  
Josefine Nebl ◽  
Kathrin Drabert ◽  
Sven Haufe ◽  
Paulina Wasserfurth ◽  
Julian Eigendorf ◽  
...  

This study investigated the exercise-induced changes in oxidative stress, nitric oxide (NO) metabolism and amino acid profile in plasma of omnivorous (OMN, n = 25), lacto-ovo-vegetarian (LOV, n = 25) and vegan (VEG, n = 23) recreational runners. Oxidative stress was measured as malondialdehyde (MDA), NO as nitrite and nitrate, and various amino acids, including homoarginine and guanidinoacetate, the precursor of creatine. All analytes were measured by validated stable-isotope dilution gas chromatographic-mass spectrometric methods. Pre-exercise, VEG had the highest MDA and nitrate concentrations, whereas nitrite concentration was highest in LOV. Amino acid profiles differed between the groups, with guanidinoacetate being highest in OMN. Upon acute exercise, MDA increased in the LOV and VEG group, whereas nitrate, nitrite and creatinine did not change. Amino acid profiles changed post-exercise in all groups, with the greatest changes being observed for alanine (+28% in OMN, +21% in LOV and +28% in VEG). Pre-exercise, OMN, LOV and VEG recreational runners differ with respect to oxidative stress, NO metabolism and amino acid profiles, in part due to their different dietary pattern. Exercise elicited different changes in oxidative stress with no changes in NO metabolism and closely comparable elevations in alanine. Guanidinoacetate seems to be differently utilized in OMN, LOV and VEG, pre- and post-exercise.


1998 ◽  
Vol 275 (1) ◽  
pp. C323-C326 ◽  
Author(s):  
Paul Linsdell ◽  
John W. Hanrahan

The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl− and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR.


2016 ◽  
Vol 6 (12) ◽  
pp. 50-60 ◽  
Author(s):  
Aziza A. Saad ◽  
Amany El-Sikaily ◽  
Hany Kassem

Background. When heavy metals accumulate in air, soil, and water, the risk of human exposure increases among industrial workers, as well as in people living near polluted areas. Heavy metals adversely affect a variety of bodily systems such as the cardiovascular, respiratory, endocrine, immune, and reproductive systems. In addition, long-term exposure and accumulation of heavy metals in the body may disturb oxidative stress genes and thus increase the susceptibility to various diseases. Objectives. The aim of this study is to estimate the metallothionein concentration in both mussel samples from Abu Qir Bay, Egypt and the blood of local fishermen as a biomarker of exposure to metal pollution. Methods. Levels of metallothionein and heavy metals were measured in mussels. Blood levels of metallothionein and heavy metals of local fishermen were measured and compared with a control group. The effect of heavy metal exposure on oxidative stress status was investigated through the determination of malondialdehyde (MDA), catalase and glutathione content. Results. The results of this study showed high concentrations of metallothionein in mussels and in fishermen's blood, accompanied by high concentrations of metals such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). At the same time, a significant decrease in glutathione content and catalase enzyme activity was associated with a significant increase in the malondialdehyde concentrations in sera of fishermen. Conclusions. The present study found that the El Maadiya region is polluted with heavy metals, inducing oxidative stress in fishermen in the vicinity. These results reveal the necessity of further environmental monitoring in the study area in order to evaluate other types of pollutants and their effects on human health.


2021 ◽  
Author(s):  
William N. Beavers ◽  
Ashley L. DuMont ◽  
Andrew J. Monteith ◽  
K. Nichole Maloney ◽  
Keri A. Tallman ◽  
...  

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing, however, Δmsr does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, Δmsr is slower to recover following co-culture with both murine and human neutrophils than USA300 wildtype. Δmsr is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wildtype and Δmsr have similar survival phenotypes when incubated with murine whole blood. However, Δmsr is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host. IMPORTANCE Oxidative stress is a host defense strategy to control bacterial infections, and bacteria have evolved systems to counteract this innate immune defense. Here we investigate the peptide methionine sulfoxide reductase system in Staphylococcus aureus that repairs oxidized methionine residues in proteins, preventing the need to resynthesize damaged proteins de novo. Most organisms have an Msr system, and in S. aureus these enzymes are protective against HOCl killing, the major oxidant produced by neutrophils. The S. aureus Msr system does not have a significant contribution to pathogenesis in bacteremia murine infection models but does protect S. aureus in both skin and intraperitoneal infection models. Strains lacking Msr activity are killed equivalently to wildtype by murine whole blood, and Δmsr is more sensitive to killing by human whole blood than the wildtype strain. These data identify the Msr enzymes as important and potentially specific factors for S. aureus pathogenesis in the human host.


Author(s):  
Daihany Moraes Callegari Elaine M. S. G. Lobato

Boron (B) and Calcium (Ca) unbalance in plants during early stages can generate oxidative stress and consequently to interfere negatively on growth and quality of seedlings. This study aims to evaluate the gas exchange and measure the biochemical responses, responding how high concentrations of B and Ca can affect the growth and quality of young Schizolobium parahyba plants. The experimental design used was completely randomised with four treatments [1 - 25 µM B + 5 mM Ca (control); 2 - 25 µM B + 50 mM Ca (Ca high); 3- 250 µM B + 5 mM Ca (B high) and 4 - 250 µM B + 50 mM Ca (B and Ca high)]. Negative impacts on gas exchange, photosynthetic pigments and total glutathione were obtained, besides increases in hydrogen peroxide and electrolyte leakage were verified in plants treated with B and Ca high, indicating oxidative stress. Thus, application 250 µM B combined with 50 mM Ca promoted disorders in plant metabolism, decreasing the growth and quality of young Schizolobium parahyba plants.


2021 ◽  
Author(s):  
Maria T. Creighton ◽  
Dugassa Nemie-Feyissa ◽  
Nabeela Zaman ◽  
Sverre S. Johansen ◽  
Hege Dysjaland ◽  
...  

Abstract Background: LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) transfers a methyl group from the methyl donor S-adenosylmethionine (SAM) to the catalytic subunit of PROTEIN PHOSPHATASE 2A (PP2A). This post-translational modification of PP2A is manifested throughout eukaryotes from yeast to plants and animals. Although highly conserved, the importance of the methylation is poorly understood. Since Arabidopsis plants with knocked out LCMT1 grow and develop fairly normally, we decided to search for conditions that may reveal the benefits of this regulation. We compared the effects of various stressful conditions on Arabidopsis wild type (WT) and a lcmt1 mutant possessing only non-methylated PP2A. Results: Seedlings were grown in Petri dishes for 5-12 days, or in rock wool and soil for up to 7 weeks. A significant increase in sodium concentration was found for lcmt1 relative to WT, but this was not linked with stressful conditions. Plants were exposed to variable levels of the chelator EDTA, iron, zinc, aluminium, heat, and hydrogen peroxide. The lcmt1 mutant was clearly more sensitive than WT to all the various stresses, as demonstrated by effects on seedling root growth and on shoots of rosette stage plants on rock wool. When omitting EDTA, expression of genes known as signature genes for iron deficiency, FIT1, bHLH100, IMA1, IRT1 was strongly enhanced in lcmt1. Although an iron starvation response was induced, Fe homeostasis was apparently maintained by slowed growth in lcmt1 and the Fe level related to tissue dry weight was not changed. Among genes induced in lcmt1 were also the Zn induced gene ZIF1, and heat shock protein HSP90-1. Concentrations of non-iron transition metals, Cu, Mn and Zn, increased significantly in response to lack of EDTA for both lcmt1 and WT tissue, and especially the growth of lcmt1 was strongly hampered. Conclusions: Presence of the LCMT1 gene was necessary to cope efficiently with an imbalance in the micronutrients, heat stress, and oxidative stress. Methylation of PP2A appears important to ameliorate the toxic effects of metals present in unfavourable high concentrations as well as heat or oxidative stress. The experiments establish LCMT1 as a key component in broad stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document