P–050 The effectiveness of the platelet-rich plasma treatment of men with severe oligoasthenoteratozoospermia

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
O Somova ◽  
H Ivanova ◽  
N Sotnyk ◽  
K Kovalenko ◽  
I Feskova

Abstract Study question To evaluate the effect of platelet-rich plasma (PRP) testicular injections on spermogram parameters of men with severe oligoasthenoteratozoospermia (OAT). Summary answer The PRP testicular injections have beneficial effects on spermatogenesis and enhance sperm concentration and motility in infertile men with OAT. What is known already The use of PRP therapy in assisted reproductive technologies is debatable. Despite the recent evidence of its positive effects in promoting endometrial and follicular growth, data from clinical studies are limited. There are only a few papers on the effectiveness of PRP therapy in the treatment of male infertility and sexual dysfunction. In more detail, the influence of PRP on spermatogenesis was carried out only on experimental animals. Although the mechanisms of its action have not yet been clarified, it is assumed that PRP, containing many biologically active molecules, realizes its effect through the tissue regeneration and cell proliferation. Study design, size, duration This prospective study included 68 men (34.6±5.2) years old with severe OAT (≤4 million/ml, motility ≤30%, normal sperm morphology ≤1%) receiving hormonal and antioxidant (AO) therapy during 6 months before in vitro fertilization cycles. 33 of them were injected once with autologous PRP (0.5 ml in each testicle). Spermogram and testosterone level were analyzed before the treatment and in 3, 4 and 6 months after it. Participants/materials, setting, methods: Sperm concentration, motility and morphology in ejaculate of 33 men of PRP group were compared with those in the group of 35 men without PRP within 6 months of starting the treatment. Total and free testosterone level were measured in blood serum. PRP was prepared by centrifuging the patient’s own blood in the anticoagulant-containing tubes. The final concentration of platelets in the obtained sample was 950.000 – 1.250 000 cells in 1 ml. Main results and the role of chance 4 months after the PRP injection, sperm concentration and motility increased in 18 of 33 men of the PRP group compared with the baseline (before the treatment) – 4.2 (1.0; 6.9) vs 1.4 (0.1; 3.4) mln/ml (p < 0.05) and 36.7 (30.6; 45.8) vs 17.7 (6.7; 28.2)% respectively (p < 0.05).The maximum increase in sperm motility (but not in sperm concentration!) was observed in 24 men in 6 months – 49.6 (39.6; 56.4)% (p < 0.05). Percent of morphologically normal spermatozoa in ejaculate slightly increased only in 12 men in that time period from 0–1% to 1–2%. The total testosterone level was 2.4 times higher than the baseline (31.6±7.2 vs 13.2±4.3 nmol/l, p < 0.05), the free testosterone level was 1.8 times higher (14.5±3.5 vs 7.9±3.0 pgl/ml, p < 0.05). Unlike the PRP group, in the group of men without PRP treatment, the sperm parameters did not changed compared with the baseline in 4 months after the starting hormonal and AO treatment. A significant increase of sperin concentration was observed only in 17 of 35 patients in 6 months. Sperm motility and percent of morphologically normal spermatozoa after the treatment did not differ from the baseline. Changes in the testosterone levels were similar to changes in PRP group. Limitations, reasons for caution Only young and middle-aged men were considered in the study. Large randomized controlled studies are required to confirm the PRP therapy efficacy and safety of f various fertility disorders. There are also no standardized protocols for PRP preparation. Wider implications of the findings: PRP therapy may have great potential for the treatment of male infertility and improving spermatogenesis. Optimization of methods of PRP preparation and dosage of testicular injections can enhance reproductive outcomes in assisted reproductive technologies. Trial registration number Not applicable

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
O Somova ◽  
H Ivanova ◽  
N Sotnyk ◽  
K Kovalenko ◽  
I Feskova

Abstract Study question To evaluate the effect of platelet-rich plasma (PRP) testicular injections on spermogram parameters of men with severe oligoasthenoteratozoospermia (OAT). Summary answer The PRP testicular injections have beneficial effects on spermatogenesis and enhance sperm concentration and motility in infertile men with OAT. What is known already The use of PRP therapy in assisted reproductive technologies is debatable. Despite the recent evidence of its positive effects in promoting endometrial and follicular growth, data from clinical studies are limited. There are only a few papers on the effectiveness of PRP therapy in the treatment of male infertility and sexual dysfunction. In more detail, the influence of PRP on spermatogenesis was carried out only on experimental animals. Although the mechanisms of its action have not yet been clarified, it is assumed that PRP, containing many biologically active molecules, realizes its effect through the tissue regeneration and cell proliferation. Study design, size, duration This prospective study included 68 men (34.6±5.2) years old with severe OAT (≤4 million/ml, motility ≤30%, normal sperm morphology ≤1%) receiving hormonal and antioxidant (AO) therapy during 6 months before in vitro fertilization cycles. 33 of them were injected once with autologous PRP (0.5 ml in each testicle). Spermogram and testosterone level were analyzed before the treatment and in 3, 4 and 6 months after it. Participants/materials, setting, methods Sperm concentration, motility and morphology in ejaculate of 33 men of PRP group were compared with those in the group of 35 men without PRP within 6 months of starting the treatment. Total and free testosterone level were measured in blood serum. PRP was prepared by centrifuging the patient’s own blood in the anticoagulant-containing tubes. The final concentration of platelets in the obtained sample was 950.000 – 1.250 000 cells in 1 ml. Main results and the role of chance 4 months after the PRP injection, sperm concentration and motility increased in 18 of 33 men of the PRP group compared with the baseline (before the treatment) – 4.2 (1.0;6.9) vs 1.4 (0.1;3.4) mln/ml (p < 0.05) and 36.7 (30.6;45.8) vs 17.7 (6.7;28.2) % respectively (p < 0.05).The maximum increase in sperm motility (but not in sperm concentration!) was observed in 24 men in 6 months – 49.6 (39.6;56.4) % (p < 0.05). Percent of morphologically normal spermatozoa in ejaculate slightly increased only in 12 men in that time period from 0-1 % to 1-2%. The total testosterone level was 2.4 times higher than the baseline (31.6±7.2 vs 13.2±4.3 nmol/l, p < 0.05), the free testosterone level was 1.8 times higher (14.5±3.5 vs 7.9±3.0 pgl/ml, p < 0.05). Unlike the PRP group, in the group of men without PRP treatment, the sperm parameters did not changed compared with the baseline in 4 months after the starting hormonal and AO treatment. A significant increase of sperin concentration was observed only in 17 of 35 patients in 6 months. Sperm motility and percent of morphologically normal spermatozoa after the treatment did not differ from the baseline. Changes in the testosterone levels were similar to changes in PRP group. Limitations, reasons for caution Only young and middle-aged men were considered in the study. Large randomized controlled studies are required to confirm the PRP therapy efficacy and safety of f various fertility disorders. There are also no standardized protocols for PRP preparation. Wider implications of the findings PRP therapy may have great potential for the treatment of male infertility and improving spermatogenesis. Optimization of methods of PRP preparation and dosage of testicular injections can enhance reproductive outcomes in assisted reproductive technologies. Trial registration number not applicable


2021 ◽  
Vol 2 (5) ◽  
pp. 11-13
Author(s):  
Watfaa A. Abduljabar ◽  
Hayder A. L. Mossa ◽  
Muayad S. Abood

Background: Platelet –Rich Plasma (PRP) is a novel therapeutic agent used in multiple medical fields and one of these fields is the reproduction for best spermatozoa preparation and activation for upgrading activity and motility of the spermatozoa and filtered with glass wool filtration to eliminate any round cells and leukocytes from the sample. Objectives: The aim of this research is to study some sperm characteristics in two groups, the normozoospermic infertile men and th asthenozoospermic infertile group before and after activation with Glass wool Filtration and PRP and compare between both. Patients and Methods: In this study 60 infertile men were enrolled and divided into 2 groups,15 normozoospermic infertile men, and 45 ashenozoospermic infertile men during their attendance to the Infertility Clinic in High Institute for Infertility Diagnosis and Assisted Reproductive Technologies Al-Nahrain University. The collected semen samples, and seminal fluid analysis were assessed, each semen sample was divided into 3 tubes and labelled as the 1st tube which was before activation, the 2nd tube was after glass wool filtration activation technique and the 3rd tube was for semen activated by adding PRP to the medium used for glass wool filtration activation. Results: Both techniques showed increased and improved sperm motility, but the PRP was superior to the glass wool alone in upgrading Sperm Grade A Motility %, Sperm Grade B Motility % and decreasing Sperm Grade C Motility %, and Sperm Grade D Motility (Immotile Sperm). Conclusion: The PRP was significantly effective in improving the sperm activity and upgrading sperm motility more than Glass Wool Filtration technique.


Author(s):  
Ni Gusti Ayu Manik Ermayanti ◽  
I Gusti Lanang Oka ◽  
I Gede Mahardika ◽  
I Putu Suyadnya

This study was intended to determine the free testosterone levels and sperm quality of local rabbit that was given commercial feed supplemented cod fish liver oil.  The experiment design that was used in this research was Complete Random Design (CRD) with four experiments of feed, i.e. commercial feed without cod fish liver oil (R-0) as control, commercial feed + 1,5% cod fish liver oil (R-1), commercial feed + cod fish liver oil 3% (R-2), commercial feed + cod fish liver oil 4,5% (R-3). The each experiment included eight rabbits and feed experiment was given starting by 13 weeks to 26 weeks years old. The variable that observed was free testosterone level and sperm quality of local rabbit. The data that was obtained to be analyzed with One Way Anova and if its contrast was done more test with Duncan’s Multiple Range Test (DMRT). The result of this research was to show that supplementation of cod fish liver oil in commercial feed was to show the result that a real distinction of (P<0, 05) towards free testosterone level and sperm quality of local rabbit.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1916
Author(s):  
Sameh A. Abdelnour ◽  
Mahmoud Alagawany ◽  
Nesrein M. Hashem ◽  
Mayada R. Farag ◽  
Etab S. Alghamdi ◽  
...  

Nanotechnology is one of the major advanced technologies applied in different fields, including agriculture, livestock, medicine, and food sectors. Nanomaterials can help maintain the sustainability of the livestock sector through improving quantitative and qualitative production of safe, healthy, and functional animal products. Given the diverse nanotechnology applications in the animal nutrition field, the use of nanomaterials opens the horizon of opportunities for enhancing feed utilization and efficiency in animal production. Nanotechnology facilitates the development of nano vehicles for nutrients (including trace minerals), allowing efficient delivery to improve digestion and absorption for better nutrient metabolism and physiology. Nanominerals are interesting alternatives for inorganic and organic minerals for animals that can substantially enhance the bioavailability and reduce pollution. Nanominerals promote antioxidant activity, and improve growth performance, reproductive performance, immune response, intestinal health, and the nutritional value of animal products. Nanominerals are also helpful for improving assisted reproductive technologies (ART) outcomes by enriching media for cryopreservation of spermatozoa, oocytes, and embryos with antioxidant nanominerals. Despite the promising positive effects of nanominerals on animal performance and health, there are various challenges related to nanominerals, including their metabolism and fate in the animal’s body. Thus, the economic, legal, and ethical implications of nanomaterials must also be considered by the authority. This review highlights the benefits of including nanominerals (particularly nano-selenium and nano-zinc) in animal diets and/or cryopreservation media, focusing on modes of action, physiological effects, and the potential toxicity of their impact on human health.


2010 ◽  
pp. OR17-3-OR17-3
Author(s):  
Z Hyde ◽  
L Flicker ◽  
OP Almeida ◽  
GJ Hankey ◽  
K McCaul ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 170 ◽  
Author(s):  
A. Kouba ◽  
E. Willis ◽  
C. Vance ◽  
S. Hasenstab ◽  
S. Reichling ◽  
...  

Species-specific differences in breeding strategies and physiology have limited the application of assisted reproductive technologies (ART) for critically endangered amphibians in captive assurance colonies. In 2006, the Memphis Zoo (MZ) initiated a program to develop ART for the critically endangered Mississippi gopher frog after natural breeding failed. Standard gamete collection and IVF developed by MZ for reproducing endangered toads such as the Wyoming or boreal toad were applied to the gopher frog with little success, especially hormonal therapy for sperm production. Using the leopard frog as a model species for Ranids, we tested the time and dose dependence of a luteinizing hormone releasing hormone analogue (LHRHa) and hCG on sperm quantity and quality. Initial findings from the leopard frog study were critical in designing the study on gopher frogs. Our objectives were to (1) compare 2 different hormones administered intraperitoneal (500 IU hCG vs 15 μg LHRHa) or their combination on spermiation in gopher frogs; (2) develop in vivo oocyte maturation and ovulation protocols using LHRHa (15 μg) and hCG (500 IU); and (3) transfer this technology to another institution as proof of principle. In gopher frogs, 100 and 83% of the males produced sperm in response to the LHRHa and the combination treatment, respectively, whereas only 16% responded to hCG alone. Sperm concentration peaked at 1 h post-administration for all treatments, with the LHRH/hCG cocktail treatment producing the highest concentration of sperm (mean = 4.6 × 106 ± 1.2 × 106 sperm mL–1, n = 6). No differences in motility were observed between treatments (P > 0.05). For females, a series of priming hormones of hCG and LHRHa were given several months before an ovulatory hormone regimen resulting in ovulation by 100% of the females (n = 6), whereas animals not primed failed to ovulate (n = 4). These 3 separate priming and IVF trials conducted between 2008 and 2010 resulted in each female laying ∼2000 eggs, with an average fertilization rate of 76% for inseminated eggs and hundreds of tadpoles produced. These IVF tadpoles represent the first captive reproduction of gopher frogs and highlight how ART can be applied to conservation and genetic management of threatened species. Subsequently, we tested our IVF protocols on gopher frogs at Omaha's Henry Doorly Zoo using fresh (collected on site) and chilled, shipped sperm from MZ. We collected 6169 eggs from 9 hormone-primed females with all animals ovulating. A portion of the total eggs ovulated were inseminated, resulting in 2401 fertilized eggs (38.9% of total eggs collected) across 18 different male–female pairings leading to viable tadpoles. In addition, sperm transferred overnight from the MZ produced 202/441 fertilized eggs (46%). The transfer of this technology and production of endangered amphibians using chilled, shipped sperm from live animals is a conservation milestone that can be applied to other captive breeding programs.


2020 ◽  
Vol 32 (2) ◽  
pp. 203
Author(s):  
N. Buzzell ◽  
S. Blash ◽  
K. Miner ◽  
M. Schofield ◽  
J. Pollock ◽  
...  

The objective of this study was to investigate a method of oviducal semen deposition as a strategy for producing offspring from poor-quality cryopreserved goat sperm. Invitro fertilisation (IVF) and AI are common assisted reproductive technologies used in small ruminants, but they have varied results in the goat. The use of poor-quality cryopreserved-thawed sperm (&lt;50% live/dead ratio at post-thaw) can decrease the rate of success. These procedures were performed in the month of November in Central Massachusetts in the United States (42° N). Seven 10-year-old dairy goats (Saanen, Toggenburg, and Alpine breeds) were synchronised and superovulated using a progesterone implant on Day 0, a prostaglandin injection at Day 7, two daily injections of 36mg of FSH ~12h apart on Days 12-15, and progesterone implant removal on Day 14 followed by an injection of 50µg of gonadotrophin-releasing hormone. Sperm deposition was performed on Day 17 (72 h after implant removal). The animals were anaesthetised using a standardised protocol, intubated, and maintained using isoflurane, and sterile prep was performed before a midline laparotomy procedure. Straws from a single ejaculate from a transgenic founder that was cryopreserved using a commercial two-step glycerol-egg yolk-based extender were used. A straw from this collection was post-thawed 30 days after collection and, using a commercial live/dead stain, 67% live sperm was determined. The optimal type of sperm prep and sperm concentration is unknown and may be dependent on sperm quality. Therefore, different gradient preps using Vitrolife SpermGrad at three volumes (1.5 (used on two animals), 1.0, and 0.5mL) as well as two volumes of IVF Bioscience Bovine BO-SemenPrep (4.0mL (used on two animals) and 2.0mL) were used. All five pellets were diluted in 1.0mL of IVF Bioscience Bovine BO-IVF media. Sperm concentrations ranging from 75×106 to 27×106 spermmL−1 were deposited into one oviduct; then, a 10:1 dilution was performed and 7.5×106 to 2.7×10 spermmL−1 were deposited into the contralateral oviduct. The depositions were performed just proximal to the uterotubal junction in a volume of 0.1mL of diluent via a tuberculin syringe attached to a 20-gauge needle. Two days following the procedure, oviducts were flushed postmortem from three of the seven randomly selected goats. All three had fertilised embryos, and nineteen 8-cell embryos were retrieved. Three of these embryos were surgically transferred to the distal uterine horn of a suitable recipient. The recipient became pregnant and produced a single offspring. The remaining four of seven goats were killed 41 days post-surgery. Two of the four goats were pregnant, with one carrying one fetus and the other carrying five fetuses. Further studies are needed to optimise this method, but these initial results indicate that oviducal semen deposition directly into the oviduct proximal to the uterotubal junction may be a suitable alternative for producing offspring from suboptimal cryopreserved-thawed goat sperm.


2017 ◽  
Vol 29 (1) ◽  
pp. 190
Author(s):  
A. M. Raseona ◽  
O. A. Ajao ◽  
L. D. Nethengwe ◽  
L. R. Madzhie ◽  
T. L. Nedambale ◽  
...  

Preservation of semen is an important process to ensure that semen quality is sufficient for assisted reproductive technologies. The aim of this study was to evaluate the viability of bull semen collected by electro-ejaculation using commercial semen extender and 2 modified culture media stored at controlled RT (24°C) for 72 h. Two Nguni bulls were used for semen collection; after collection, the semen was evaluated macroscopically for volume, pH, and colour, and microscopically for sperm motility, viability, and morphology. Uncontaminated semen samples with progressive motility >70% and morphological defects <20% were pooled after collection before being aliquoted into 3 extenders, namely Triladyl, modified Ham’s F10, and TCM-199 culture media, at a dilution ratio of 1:4 and then stored at controlled RT (24°C). Sperm motility rate was analysed using the computer-aided sperm analyser after 0, 24, 48, and 72 h of storage. Sperm morphology and viability was performed after staining the sperm cells with spermac and nigrosine-eosin stain, respectively. The study was replicated 4 times and data were analysed using ANOVA. Triladyl had a higher sperm viability rate (41.3%) and total motility rate (96.3%) for 72 h (P < 0.01) compared with the 2 modified culture media, Ham’s F10 (26.5 and 86.8%) and TCM-199 (25.0 and 86.7%), respectively. However, Ham’s F10 had higher progressive motility rate (37.8%) as compared with the other extenders, TCM-199 (31.7%) and Triladyl (23.4). There was no significant difference (P > 0.05), in viability rate between Ham’s F10 (26.5%) and TCM-199 (25.0%). No significant difference (P > 0.05) in straight line velocity was observed for the three extenders. Furthermore, no significant difference was observed in total sperm abnormalities, except for reacted acrosomes and absent tails (P > 0.05), between the 2 Nguni bulls. Nguni semen can be preserved in Triladyl or modified Ham’s F10 and TCM-199 culture media stored at 24°C and stay viable for 72 h. Triladyl proved to be the best suitable extender of the 3 extenders, showing higher sperm viability and total motility rate as compared with Ham’s F10 and TCM-199 modified culture media.


Biology ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
Christine Green ◽  
Jessica P. Rickard ◽  
Simon P. de Graaf ◽  
Angela J. Crean

Males can adjust sperm motility instantaneously in response to the perceived risk of sperm competition. The speed of this response suggests that sperm motility is regulated by changes in seminal plasma rather than changes in the sperm cells themselves. Hence, here we test whether inter-ejaculate variation in seminal plasma can be used to alter sperm quality prior to use in assisted reproductive technologies. We supplemented fresh ejaculates of Merino rams with seminal plasma collected from previous ‘donor’ ejaculates to test whether changes in sperm kinetics were related to the relative quality of donor to focal ejaculates. We found a positive relationship between the change in sperm traits before and after supplementation, and the difference in sperm traits between the donor and focal ejaculate. Hence, sperm motility can be either increased or decreased through the addition of seminal plasma from a superior or inferior ejaculate, respectively. This positive relationship held true even when seminal plasma was added from a previous ejaculate of the same ram, although the slope of the relationship depended on the identity of both the donor and receiver ram. These findings indicate that seminal plasma plays a key role in the control and regulation of sperm kinetics, and that sperm kinetic traits can be transferred from one ejaculate to another through seminal plasma supplementation.


Sign in / Sign up

Export Citation Format

Share Document