PSXI-10 How to use ultrasonic cutter on frozen semen for multiple embryo production

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 248-249
Author(s):  
Sung Woo Kim ◽  
Jae-Yeong Lee ◽  
Chan-Lan Kim ◽  
In-Sul Hwang ◽  
Yeoung-Gyu Ko ◽  
...  

Abstract The objective of the present study was to establish conditions for using technology that can potentially enhance the efficiency of bovine embryos derived from in vitro fertilization (IVF) with frozen semen. Frozen semen from selected bulls can be stored indefinitely in liquid nitrogen as genetic resources; however, these resources are considered consumable because they cannot be regenerated. Therefore, to optimize the utilization of frozen semen, as many oocytes as possible should be fertilized with one straw. However, a sufficient number of prepared oocytes might not be available for one experiment, which can limit the use of the total spermatozoa population. Thus, an economical method for producing embryos needs to be established by optimizing technology for transplantable embryos. In this study, the utilization of frozen semen was increased by dividing the straw with an ultrasonic cutter. The post-thaw survival rate of uncut straws from Korean Proven Bulls did not differ from that of half cuttings. When ultrasonic cutting was applied to frozen semen, spermatozoa could be prepared for IVF trials at least four times, and blastocysts were produced. Therefore, cutting frozen semen with an ultrasonic cutter represents a potentially useful tool to expand genetic resources from excellent breeding stocks. This approach could also be valuable in the field of IVF of endangered species or rare breeds for their preservation, as well as in ovum pick-up (OPU) techniques.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2152
Author(s):  
Sung Woo Kim ◽  
Jae-Yeong Lee ◽  
Bongki Kim ◽  
Chan-Lan Kim ◽  
In-Sul Hwang ◽  
...  

The objective of the present study was to establish conditions for using technology that can potentially enhance the efficiency of bovine embryos derived from in vitro fertilization (IVF) with frozen semen. Frozen semen from selected bulls can be stored indefinitely in liquid nitrogen as genetic resources; however, these resources are considered consumable because they cannot be regenerated. Therefore, to optimize the utilization of frozen semen, as many oocytes as possible should be fertilized with one straw. However, a sufficient number of prepared oocytes might not be available for one experiment, which can limit the use of the total spermatozoa population. Thus, an economical method for producing embryos needs to be established by optimizing technology for transplantable embryos. In this study, the utilization of frozen semen was increased by dividing the straw with an ultrasonic cutter. The post-thaw survival rate of uncut straws from Korean Proven Bulls did not differ from that of half cuttings. When ultrasonic cutting was applied to frozen semen, spermatozoa could be prepared for IVF trials at least four times, and blastocysts were produced. Therefore, cutting frozen semen with an ultrasonic cutter represents a potentially useful tool to expand genetic resources from excellent breeding stocks. This approach could also be valuable in the field of IVF of endangered species or rare breeds for their preservation, as well as in ovum pick-up (OPU) techniques.


1999 ◽  
Vol 51 (1) ◽  
pp. 328
Author(s):  
G Rosés ◽  
C Larocca ◽  
I Lago ◽  
J Calvo ◽  
M Viqueira ◽  
...  

Reproduction ◽  
1988 ◽  
Vol 83 (2) ◽  
pp. 753-758 ◽  
Author(s):  
K. Goto ◽  
Y. Kajihara ◽  
S. Kosaka ◽  
M. Koba ◽  
Y. Nakanishi ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e108139 ◽  
Author(s):  
Maria Jesús Cánepa ◽  
Nicolás Matías Ortega ◽  
Melisa Carolina Monteleone ◽  
Nicolas Mucci ◽  
German Gustavo Kaiser ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 232
Author(s):  
C. Kim ◽  
Y. Ma ◽  
C.-C. Chang ◽  
T. Rasmussen ◽  
X. Yang ◽  
...  

It is known that heterochromatin is characterized by the presence of the histone variant of macroH2A1. MacroH2A1 is a core variant histone with a hybrid structure consisting of a domain that resembles a full-length histone H2A1 followed by a large nonhistone domain. We have previously studied the dynamic changes of macroH2A1 accumulation during the pre-implantation developmental period in the mouse. In the present study, we investigated the distribution of microH2A1 in bovine metaphase II oocytes and pre-implantation embryos at 2-, 4-, 8-, 16-cell, and morula stages as well as blastocysts harvested at Days 8, 9, 10, 11, 12, and 13 following activation and in vitro fertilization (IVF). To generate parthenotes, denuded and in vitro-matured oocytes were activated using a combined treatment of calcium ionophore A23187, cycloheximide (CHX), and 6-dimethylaminopurine (6-DMAP). Five oocytes and pre-implantation embryos at each stage of development were used to follow the development expression pattern of microH2A1 by immunocytochemistry. The cross-reactivity of the primary antibody against mouse microH2A1 was verified by Western blot analysis with bovine fibroblasts. Another staining control included immunostaining with antibody against histone molecules. The stained embryos were observed by laser-scanning confocal microscopy and epiflourescence microscopy. No microH2A1 stain was observed in bovine oocytes or pre-implantation embryos up to the expanded blastocyst stages. In the IVF group, the macroH2A1 was first found in elongated blastocysts (Day 11) after hatching. We observed different expression patterns of macroH2A1 in activated vs. IVF bovine embryos. In the parthenote group, we failed to find robust expression even when embryos were cultured for 13 days. Moreover, the pattern of macroH2A1 expression in bovine embryos was different fromn that in the mouse, in which the onset of macroH2A1 expression occurred by the 16-cell morula stage. These results suggest species differences in the establishment of epigenetic signals. This work was supported by grants from USDA to X. Y. and X. C. T.


Sign in / Sign up

Export Citation Format

Share Document