PSV-2 Maternal nutrient restriction and re-alimentation influences liver and muscle tissue development and gene expression

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 307-307
Author(s):  
Brandon I Smith ◽  
Manuel A Vasquez-Hidalgo ◽  
Kimberly A Vonnahme ◽  
Anna T Grazul-Bilska ◽  
Kendall C Swanson ◽  
...  

Abstract To determine the effects of maternal nutrient restriction and re-alimentation on fetal liver and muscle development, 48 pregnant ewes with singletons, were fed a control diet [100% National Research Council (NRC) requirements (CON)] starting at the beginning of gestation. On day 50 of gestation, ewes (n = 7) were euthanized and fetal liver and skeletal muscle samples were collected. The remaining animals were fed either CON or 60% NRC requirements (RES), a subset were euthanized at day 90 of gestation (n = 7/treatment), and fetal samples obtained. Remaining ewes were maintained on the current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, remaining ewes were euthanized, and fetal samples collected. Fetal liver was analyzed for general tissue morphology, and fetal skeletal muscles were analyzed for lipid accumulation. mRNA expression of growth and metabolic factors were quantified in liver and muscle tissues. Hepatocellular vacuolation was increased in RES-CON and RES-RES compared with CON-CON and CON-RES (P < 0.01). In semitendinosus and triceps brachii, intramyocellular lipid content increased 19% and 15%, respectively, in RES-CON and RES-RES compared with CON-CON and CON-RES (P£0.02) and in longissimus dorsi, lipid content was decreased 7% in CON-RES and RES-RES compared with CON-CON and RES-CON (P=0.01). In liver, insulin-like growth factor binding protein-1, glycogen synthase 2, and pyruvate dehydrogenase kinase 1 expression increased 1.92-fold, 1.45-fold, and 1.47-fold, respectively (P£0.03) in CON-RES and RES-RES compared with RES-CON and CON-CON. In LD, IGF1-R expression increased 3.19-fold in CON-RES and RES-RES compared with RES-CON and CON-CON (P = 0.05). These results demonstrate that maternal nutrient restriction followed by re-alimentation restores liver and muscle gene expression of growth and metabolic factors while negatively impacting liver composition and muscle lipid content potentially leading to altered tissue function and metabolism later in life. Supported by USDA-AFRI grants 2016-67016-24884 and 2017-67016-26568.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 376-377
Author(s):  
Brandon I Smith ◽  
Manuel A Vasquez-Hidalgo ◽  
Kendall C Swanson ◽  
Kimberly A Vonnahme ◽  
Anna T Grazul-Bilska ◽  
...  

Abstract To determine the effects of maternal nutrient restriction and re-alimentation on the fetal liver proteome, 48 pregnant ewes with singletons were fed a control diet [100% National Research Council (NRC) requirements (CON)] starting at the beginning of gestation. On day 50 of gestation, a subset of ewes were fed either CON or 60% NRC requirements (RES). A subset of ewes were euthanized at day 90 of gestation (n = 7/treatment), and fetal liver samples collected. Remaining ewes were maintained on the current diet (CON-CON, n=6; RES-RES, n = 7) or switched to alternative diet (CON-RES, RES-CON; n=7/treatment). On day 130 of gestation, remaining ewes were euthanized, and fetal samples collected. Fetal liver proteins were extracted, digested by trypsin and subjected to multiplexed, label-based quantitative mass spectrometry analysis integrating Tandem Mass Tags. Proteins were identified and quantified using Proteome Discoverer (v2.5, Thermo Scientific) and differential abundance analysis was performed using ANOVA and post hoc Tukey’s HSD test. Hierarchal clustering analysis showed clustering of treatments by day of gestation. However, differences were also observed between treatments. At day 90 of gestation, 23 proteins were differentially expressed in RES compared with CON among which glycyl tRNA synthetase and pyruvate carboxylase were increased 12% and 10%, respectively (P < 0.03). At day 130 of gestation, 24, 5, and 71 proteins were differentially expressed in CON-RES, RES-CON, and RES-RES, respectively, compared with CON-CON. Carnosine dipeptidase 2 was decreased 7% in CON-RES and rho associated protein kinase and glycogen synthase 2 were increased 20% and 26% in RES-CON and RES-RES, respectively, compared with CON-CON (P < 0.04). These results indicate that nutrient restriction during mid- and late-gestation impacts expression of proteins involved in gluconeogenesis, glycogenesis, and the formation of carnosine, an integral molecule in beta-oxidation, and that re-alimentation alters proteins involved in cell migration pathways. Supported by USDA-AFRI grants 2016-67016-24884 and 2017-67016-26568.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 284-285
Author(s):  
Brandon I Smith ◽  
Manuel A Vasquez-Hidalgo ◽  
Kimberly A Vonnahme ◽  
Anna T Grazul-Bilska ◽  
Kendall C Swanson ◽  
...  

Abstract To determine the effects of maternal nutrient restriction and re-alimentation on offspring metabolism, 48 pregnant ewes with singletons, were fed a control diet [100% National Research Council (NRC) requirements (CON)] starting at the beginning of gestation. On day 50 of gestation, ewes (n = 7) were euthanized and fetal liver, muscle, and blood samples were collected. The remaining animals were fed either CON or 60% NRC requirements (RES), a subset were euthanized at day 90 of gestation (n = 7/treatment), and fetal samples obtained. Remaining ewes were maintained on the current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, remaining ewes were euthanized, and fetal samples collected. Fetal liver, longissimus dorsi, and blood metabolites were analyzed using LC-MS/MS at Metabolon Inc. Pathway enrichment analysis was conducted using MetaboAnalyst 4.0. In liver, muscle, and blood, 64, 44, and 34 pathways were enriched between treatments at day 130 gestation and 10, 6, and 11 pathways were enriched at day 90 gestation, respectively. Arginine and proline metabolism; primary bile acid biosynthesis; and valine, leucine, and isoleucine biosynthesis were the most highly enriched pathways in RES compared with CON in liver, muscle, and blood, respectively. Additionally, the pentose phosphate pathway; valine, leucine, and isoleucine metabolism; and phenylalanine metabolism were the most highly enriched pathways in RES-CON compared with CON-CON in liver, muscle, and blood, respectively. In liver, ribulose 5-phosphate, xylulose 5-phosphate, and ribose 5-phosphate were decreased 1.82-, 1.54-, and 2.38-fold, respectively in RES-CON compared with CON-CON (P ≤ 0.05). Total triacylglycerols were increased 3.04-fold in muscle and decreased 1.57-fold in blood in RES-CON and RES-RES compared with CON-CON and CON-RES (P ≤ 0.05). Mid-gestational nutrient restriction and subsequent re-alimentation altered distinct metabolic amino acid, carbohydrate, and lipid pathways, potentially altering postnatal growth. Supported by USDA-AFRI grants 2016-67016-24884 and 2017-67016-26568.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 98-98
Author(s):  
Brandon I Smith ◽  
Manuel A Vásquez-Hidalgo ◽  
Kimberly A Vonnahme ◽  
Kendall C Swanson ◽  
Anna T Grazul-Bilska ◽  
...  

Abstract The duration and timing of inadequate maternal nutrition can have detrimental effects on metabolism and organogenesis in the offspring. Re-alimentation, a common management practice that involves feeding full nutrient requirements following a period of nutrient restriction, may reduce the negative impacts of maternal nutrient restriction. To determine the effects of maternal nutrient restriction and re-alimentation on offspring growth,48 primiparous ewes, confirmed pregnant with singletons, were fed a control diet consisting of100% NRC requirements (CON) starting on day25 of gestation. On day50 of gestation, ewes (n = 7) were euthanized and fetal liver, muscle, and blood samples were collected. The remaining animals were fed either CON or60% NRC requirements (RES). On day90 of gestation, a portion of ewes were euthanized (n = 7 per treatment) and fetal samples and weights were collected. Remaining ewes were maintained on the current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to the alternative diet (CON-RES, RES-CON; n = 7/treatment). On day130 of gestation, all remaining ewes were euthanized. All fetal BW, liver, longissimus muscle, semitendinosus, and triceps brachii weights were determined for each day of gestation. Fetal BW’s were not different between treatment groups (P = 0.29; P = 0.83). Fetal liver weights decreased12.89% in RES-RES compared with CON-CON at day130 (P = 0.049), but were not different at day90 (P = 0.69). There was a tendency for decreased semitendinosus weight in RES group compared with CON at day90 (P = 0.055). Liver lipid droplet accumulation was analyzed for day90 and130 using histochemistry and an effect of maternal nutrition was not observed (P = 0.562). In summary, maternal nutrient restriction reduces offspring muscle and liver growth. To gain insight into the effects of maternal nutrient restriction and re-alimentation on liver development and metabolism, analysis of liver morphology, gene expression, and global metabolomics are needed. Supported by USDA-AFRI grant2016-67016-24884


2017 ◽  
Vol 1 (2) ◽  
pp. 160-167 ◽  
Author(s):  
K. J. McLean ◽  
M. S. Crouse ◽  
M. R. Crosswhite ◽  
N. Negrin Pereira ◽  
C. R. Dahlen ◽  
...  

Abstract We hypothesized that maternal nutrient restriction starting at the time of breeding would influence placental vascular development and gene expression of angiogenic factors during the first 50 d of gestation in beef heifers. Commercial Angus crossbred heifers (n = 49) were maintained on a total mixed ration and supplemented with dried distillers grains with solubles. All heifers were subject to 5-d CO-Synch + CIDR estrous synchronization protocol, AI to a single Angus sire, and randomly assigned to dietary treatments. One half were assigned to control diet (CON) targeted to gain 0.45 kg/d and the remaining half were assigned to restricted diet (RES), which received 60% of CON. Heifers were subjected to ovariohysterectomy on d 16, 34, or 50 of gestation. Utero-placental tissues were obtained from the uterine horns ipsilateral and contralateral to the corpus luteum and separated into maternal caruncle (CAR); maternal endometrium, inter-caruncle (ICAR), and fetal membranes (FM). After collection, all tissues were snap frozen and stored at –80°C. There were no treatment × stage of gestation interactions (P >0.13) on the mRNA expression of vascular endothelial growth factor (VEGF) or endothelial nitric oxide synthase (eNOS). Heifers on CON treatment had greater (P = 0.03) expression of VEGF compared with RES heifers in NP-ICAR. On d 50 expression of eNOS was increased (P = 0.05) compared with d 16 in P-CAR. Expression of eNOS mRNA was decreased (P = 0.04) on d 16 compared with d 34 and 50 in CON heifer. Gene expression of eNOS was increased (P < 0.001) in the pregnant uterine horn compared with the NP uterine horn on d 34 and 50. Expression of eNOS was also increased (P < 0.003) on d 34 and 50 in the pregnant uterine horn compared with FM. There was a maternal nutritional plane × stage of gestation interaction (P = 0.01) on the vascular ratio (vascular volume/tissue volume) in maternal tissues. The RES heifers had a greater vascular ratio on d 16 compared with d 34 and 50; whereas, CON heifers had a greater vascular ratio on d 34 compared with d 16 and 50. In the NP uterine horn, there was also an increase (P = 0.02) in vascular volume of FM from CON heifers compared with FM from RES heifers. We conclude that maternal nutrient restriction did alter both vascularity and mRNA expression of angiogenic factor in utero-placental tissues during the establishment of pregnancy in first parity beef heifers.


2020 ◽  
Vol 319 (3) ◽  
pp. E614-E628
Author(s):  
Jenica H. Kakadia ◽  
Bhawani B. Jain ◽  
Kyle Biggar ◽  
Austen Sutherland ◽  
Karen Nygard ◽  
...  

In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (−13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (−64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α′/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, −52%, P = 0.05) and mTORC2 (p-AktSer473, −56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 248-248
Author(s):  
Michaela Mitchell ◽  
Amanda E Liefeld ◽  
Kristen E Govoni ◽  
Kimberly A Vonnahme ◽  
Anna T Grazul-Bilska ◽  
...  

Abstract Satellite cells are muscle stem cells that contribute to postnatal growth. The satellite cell population is established during fetal muscle development, through the retention of Pax7-expressing myogenic progenitor cells. We hypothesized that realimentation during late gestation would ameliorate the negative effect of poor maternal nutrition during mid-gestation on the fetal myogenic progenitor cell population. To test this hypothesis, 47 ewes pregnant with singletons were fed a control diet of 100% of National Research Council (NRC) requirements (CON) starting at day 25 of gestation. At day 50 of gestation, six ewes were euthanized and the remainder were randomly assigned to one of two diets: CON or 60% of CON (RES). On day 90 of gestation, a subset of ewes were euthanized (n = 7 per treatment) and fetal semitendinosus samples were collected. The remaining ewes were maintained on the current diet (CON-CON, RES-RES) or switched to the alternative diet (CON-RES, RES-CON). On day 130 of gestation, all ewes were euthanized for fetal sample collection (n = 6–7 per treatment). Fetal semitendinosus was cryosectioned and immunostained for detection of Pax7(+) cells followed by image analysis. Data were analyzed using the MIXED procedure in SAS. Semitendinosus from RES lambs had a greater number of Pax7(+) cells but similar total cell numbers to CON offspring, resulting in a greater percentage of Pax7(+) cells at d90 of gestation (CON: 13.22 ± 0.74%; RES: 16.01 ± 0.74%, P = 0.01). At day 130, there was no difference in the percentage of Pax7(+) cells between dietary treatment groups (CON-CON: 7.88 ± 0.80%; CON-RES: 6.34 ± 0.74%; RES-RES: 7.82 ± 0.74%; RES-CON: 6.87 ± 0.74%; P &gt; 0.17). The percentage of Pax7(+) cells decreased from day 90 to day 130, regardless of dietary treatment (P &lt; 0.0001). In summary, restricted maternal nutrition may delay progenitor cell differentiation at mid-gestation.


2021 ◽  
Vol 22 (14) ◽  
pp. 7654
Author(s):  
Chelsie B. Steinhauser ◽  
Colleen A. Lambo ◽  
Katharine Askelson ◽  
Gregory W. Burns ◽  
Susanta K. Behura ◽  
...  

Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


Metabolism ◽  
2003 ◽  
Vol 52 (5) ◽  
pp. 535-539 ◽  
Author(s):  
Xudong Huang ◽  
Mona Hansson ◽  
Esa Laurila ◽  
Bo Ahrén ◽  
Leif Groop

1990 ◽  
Vol 10 (5) ◽  
pp. 2418-2422 ◽  
Author(s):  
M Trus ◽  
N Benvenisty ◽  
H Cohen ◽  
L Reshef

A sequential pattern of interactions of trans-acting factors in rat liver with the phosphoenolpyruvate carboxykinase promoter during late development was observed. A liver-enriched factor, possibly AF1, interacted with the promoter in fetal liver, whereas a factor with the characteristics of C/EBP bound the promoter after birth with the onset of the gene expression.


Sign in / Sign up

Export Citation Format

Share Document