PSVI-23 Depot- specific patterns of mRNA and miRNA gene expression in adipose tissue from Texel-cross and Suffolk lambs

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 385-386
Author(s):  
Aliute Udoka ◽  
Maslyn A Greene ◽  
Susan K Duckett

Abstract Excess fat deposition is costly to the producer in terms of input and final product; it also usually does not occur equally across all adipose depots. Further examination is necessary to determine a correlation between varying gene expression and fatty acid composition in different tissue depots, and further, across different breeds. Texel-Suffolk (n = 5) and Suffolk-Suffolk (n = 4) lambs were finished to 203 d of age and used to compare both mRNA and microRNA (miR) gene expression changes between breed and among tissue depots. Seven different depots were harvested and snap-frozen from all nine lambs. The liver, longissimus muscle of the rib, kidney fat, mesenteric fat, omental fat, subcutaneous fat, and intermuscular fat were all harvested. Texel-sired lambs had greater (P < 0.05) flank streaking, quality grade, and weight of fat depots compared to Suffolk. Texel-cross lambs had higher (P < 0.05) oleic-to-stearic fatty acid ratio than Suffolk lambs in this study, displaying a breed difference concerning this desaturation ratio. Tissue and breed interactions were observed for oleic-to-stearic and palmitoleic-to-palmitic ratio differences (P < 0.05) depending on tissue type. Tissue and breed interactions were trending in various tissues concerning the expression of the gene, stearoyl-CoA desaturase-1(SCD-1). SCD-1 seemed to be upregulated (P < 0.10) in a multitude of tissues while others do not appear to be differentially expressed, dependent upon breed. Data showed an association between SCD-1 and mi-199a-3p among different tissue variations. This may suggest that adipose tissue is more complex than what is currently known. Lipogenic gene expression differed between tissue and adipose depots, and could potentially broaden targets that could aid in maximizing animal efficiency.

2004 ◽  
Vol 63 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Christine M. Williams

Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory α adrenergic receptors in abdominal regions and greater α adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer α adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.


2006 ◽  
Vol 291 (5) ◽  
pp. E1115-E1123 ◽  
Author(s):  
Susanne B. Votruba ◽  
Michael D. Jensen

The mechanism(s) by which sex specific differences in regional body fat distribution develop are not known. We assessed the effects of a high-fat (HF) meal on fatty acid oxidation and uptake into regional fat depots using isotopic tracers and adipose biopsies. Thirty men (BMI 23.6 ± 0.3 kg/m2) and 29 women (BMI 22.4 ± 0.3 kg/m2) received a meal containing [3H]triolein. Twelve of the men and 13 of the women received an additional 80 g of triolein in the meal (HF) and the remainder received a normal-fat (NF) meal. Adipose tissue lipoprotein lipase (LPL) activity was measured in the fed and fasted state. After 24 h, meal fatty acid uptake into subcutaneous adipose tissue was assessed. The efficiency of meal fat uptake into upper body subcutaneous fat was similar in both sexes, but women had a greater leg fat uptake, especially in response to a HF meal ( P < 0.0001). A correlation between fed-state LPL activity and meal fat uptake was found in both upper and lower body fat ( P < 0.0001, r = 0.69). These studies show that, in times of net fat storage, women preferentially increase uptake in leg adipose tissue, and this is likely mediated by fed-state LPL activity.


Author(s):  
Qingyi Jia ◽  
B Gisella Carranza Leon ◽  
Michael D Jensen

Abstract Context The factors that determine the recycling of free fatty acids (FFA) back into different adipose tissue depots via the direct storage pathway are not completely understood. Objective To assess the interactions between adipocyte factors and plasma FFA concentrations that determine regional FFA storage rates. Design We measured direct adipose tissue FFA storage rates before and after weight loss under high FFA (intravenous somatostatin and epinephrine) and low (intravenous insulin and glucose) FFA concentrations. Setting Mayo Clinic Clinical Research Unit. Patients Sixteen premenopausal women, BMI 30 - 37 kg/m 2. Intervention Comprehensive lifestyle weight loss program. Main Outcome Measure Direct FFA storage rates in upper and lower body subcutaneous fat. Results Over the entire range of FFA and under isolated conditions of elevated FFA concentrations the storage rates of FFA into upper and lower body subcutaneous fat per unit lipid were associated with concentrations, not adipocyte fatty acid storage factors. Under low FFA conditions, direct FFA storage rates were related to adipocyte CD36 content, not tissue level content of fatty acid storage factors. Weight loss did not change these relationships. Conclusions The regulation of direct FFA storage under low FFA concentration conditions appears to be at the level of the cell/adipocyte content of CD36, whereas under high FFA concentration conditions direct FFA storage at the tissue level is predicted by plasma FFA concentrations, independent of adipocyte size or fatty acid storage factors. These observations offer novel insights into how adipose tissue regulates direct FFA storage in humans.


2020 ◽  
Author(s):  
Olga Gruzdeva ◽  
Yulia Dyleva ◽  
Ekaterina Belik ◽  
Daria Borodkina ◽  
Maxim Sinitsky ◽  
...  

Abstract Background Adipose tissue (AT) is an endocrine and paracrine organ that synthesizes biologically active adipocytokines, which affect inflammation, fibrosis, and atherogenesis. Epicardial and perivascular fat depots are of great interest owing to potential effects on the myocardium and blood vessels. Objective To assess expression and secretion of adipocytokine genes in adipose tissue in patients coronary artery disease (CAD) and patients with aortic or mitral valve replacement. Methods The study included 84 patients with CAD and 50 patients with aortic or mitral valve replacement. Adipocytes were isolated from subcutaneous (SAT), epicardial (EAT), and perivascular AT (PVAT) samples. Isolated adipocytes were cultured for 24 h after which, gene expression and secretion levels of selected adipokines and cytokines in the culture medium were determined. Results The study parameters differed depending on the adipose tissue location. EAT adipocytes in CAD patients were characterized by a pronounced imbalance in the adipokine system. EAT had the lowest adiponectin gene expression and secretion, regardless of nosology and high expression levels of the leptin gene, its receptor, and interleukin-6 (IL-6) were detected. High leptin and IL-6 levels resulted in increased pro-inflammatory activity, as observed in both EAT and PVAT adipocytes, especially in individuals with coronary artery disease. Conclusion The "protective" potential of adipose tissue depends on its location.


2015 ◽  
Vol 31 (4) ◽  
pp. 543-550 ◽  
Author(s):  
T. Popova ◽  
J. Nakev ◽  
Y. Marchev

The aim of this study was to provide information on the fatty acid profile of different adipose depots - subcutaneous (upper and inner backfat layers) and intramuscular (m. Longissimus dorsi) in East Balkan pigs. The animals were reared in free-range conditions and slaughtered at an average live weight of 107?1.65kg. The results of the study showed that the various adipose tissues in pigs have different lipid metabolism and hence differ in their fatty acid composition. Intramuscular fat had significantly higher content of the saturated C16:0 and C18:0 (P<0.001), as well as the C16:1 (P<0.001) than the subcutaneous fat. In regards to the content of the polyunsaturated fatty acids, the latter displayed considerably higher content of both C18:2 and C18:3 (P<0.001) in comparison to the intramuscular fat in m. Longissimus dorsi. The differences between the subcutaneous and intramuscular adipose tissue in the individual fatty acids determined the similar trend of change in the total content of saturated and polyunsaturated fatty acids. Significant differences between the backfat layers were detected for C16:1, C18:0 and C18:3 (P<0.001). Stearic acid (C18:0) displayed higher content of the inner, while both C16:1 and C18:3 had higher proportion in the outer backfat layer in the East Balkan pigs. Except for C20:2, the long chain polyunsaturated n-6 and n-3 fatty acids had significantly higher proportions in the intramuscular fat, however no differences were determined between the two backfat layers.


2019 ◽  
Vol 104 (11) ◽  
pp. 5225-5237 ◽  
Author(s):  
Mariam Haffa ◽  
Andreana N Holowatyj ◽  
Mario Kratz ◽  
Reka Toth ◽  
Axel Benner ◽  
...  

Abstract Context Adipose tissue inflammation and dysregulated energy homeostasis are key mechanisms linking obesity and cancer. Distinct adipose tissue depots strongly differ in their metabolic profiles; however, comprehensive studies of depot-specific perturbations among patients with cancer are lacking. Objective We compared transcriptome profiles of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from patients with colorectal cancer and assessed the associations of different anthropometric measures with depot-specific gene expression. Design Whole transcriptomes of VAT and SAT were measured in 233 patients from the ColoCare Study, and visceral and subcutaneous fat area were quantified via CT. Results VAT compared with SAT showed elevated gene expression of cytokines, cell adhesion molecules, and key regulators of metabolic homeostasis. Increased fat area was associated with downregulated lipid and small molecule metabolism and upregulated inflammatory pathways in both compartments. Comparing these patterns between depots proved specific and more pronounced gene expression alterations in SAT and identified unique associations of integrins and lipid metabolism–related enzymes. VAT gene expression patterns that were associated with visceral fat area poorly overlapped with patterns associated with self-reported body mass index (BMI). However, subcutaneous fat area and BMI showed similar associations with SAT gene expression. Conclusions This large-scale human study demonstrates pronounced disparities between distinct adipose tissue depots and reveals that BMI poorly correlates with fat mass–associated changes in VAT. Taken together, these results provide crucial evidence for the necessity to differentiate between distinct adipose tissue depots for a correct characterization of gene expression profiles that may affect metabolic health of patients with colorectal cancer.


1961 ◽  
Vol 201 (3) ◽  
pp. 540-546 ◽  
Author(s):  
William Benjamin ◽  
Alfred Gellhorn ◽  
Mary Wagner ◽  
Harold Kundel

Lipid metabolism and chemistry was studied in adipose tissues of the rat from the age of 38 days to 647 days. Aging process was characterized by a marked decrease in lipid synthesis from acetate, a reduction in the proportion of glucose metabolized by the pentose phosphate pathway, and a lower rate of palmitate incorporation into the mixed lipids. Oxidation of palmitic acid to CO2 and release of free fatty acid by epididymal fat was the same in young and old tissues under control conditions; when, however, glucose was absent from the medium or when epinephrine was added, there was a significantly greater rate of palmitic acid oxidation and free fatty acid release by young compared to old adipose tissue. Rate of acetate incorporation into mixed lipids by multiple adipose tissue sites was determined at different ages. Consistently greater rates of lipid biosynthesis were found in the epididymal, perirenal, mesenteric and interscapular adipose tissues than in subcutaneous fat at all ages. Rate of lipid synthesis by the interscapular fat (unlike any of the other depots) remained high at all ages studied. A greater proportion of short chain fatty acids was found in adipose tissues from young rats than in the old. This was related to fatty acid composition of rat milk.


2017 ◽  
Vol 100 (3) ◽  
pp. 2104-2118 ◽  
Author(s):  
Cynthia M. Scholte ◽  
Pedram Rezamand ◽  
Chia-Yu Tsai ◽  
Zahra M. Amiri ◽  
Kirk C. Ramsey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document